PCA主成分分析 R语言】的更多相关文章

1. PCA优缺点 利用PCA达到降维目的,避免高维灾难. PCA把所有样本当作一个整体处理,忽略了类别属性,所以其丢掉的某些属性可能正好包含了重要的分类信息 2. PCA原理 条件1:给定一个m*n的数据矩阵D, 其协方差矩阵为S. 如果D经过预处理, 使得每个每个属性的均值均为0, 则有S=DTDS=DTD. PCA的目标是找到一个满足如下性质的数据变换: - 每对不同的新属性的协方差为0,即属性间相互独立: - 属性按照每个属性捕获的数据方差大小进行排序: - 第一个属性捕获尽可能多的数据…
主成分分析(Principal Component Analysis,PCA), 是一种统计方法.通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分. 原理: 在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性.人们自然希望变量个数较少而得到的信息较多.在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠.主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量…
原理: 主成分分析 - stanford 主成分分析法 - 智库 主成分分析(Principal Component Analysis)原理 主成分分析及R语言案例 - 文库 主成分分析法的原理应用及计算步骤 - 文库 主成分分析之R篇 [机器学习算法实现]主成分分析(PCA)--基于python+numpy scikit-learn中PCA的使用方法 Python 主成分分析PCA 机器学习实战-PCA主成分分析.降维(好) 关于主成分分析的五个问题 多变量统计方法,通过析取主成分显出最大的个…
如果你的职业定位是数据分析师/计算生物学家,那么不懂PCA.t-SNE的原理就说不过去了吧.跑通软件没什么了不起的,网上那么多教程,copy一下就会.关键是要懂其数学原理,理解算法的假设,适合解决什么样的问题.学习可以高效,但却没有捷径,你终将为自己的思维懒惰和行为懒惰买单. 2019年04月25日 不该先说covariacne matrix协方差矩阵的,此乃后话,先从直觉理解PCA.先看一个数据实例,明显的两个维度之间有一个相关性,大部分的方差可以被斜对角的维度解释,少数的noise则被虚线解…
数据的导入 > data=read.csv('F:/R语言工作空间/pca/data.csv') #数据的导入> > ls(data) #ls()函数列出所有变量 [1] "X" "不良贷款率" "存贷款比率" "存款增长率" "贷款增长率" "流动比率" "收入利润率" [8] "资本充足率" "资本利润率"…
https://www.cnblogs.com/jin-liang/p/9064020.html 数据的导入 > data=read.csv('F:/R语言工作空间/pca/data.csv') #数据的导入 > > ls(data) #ls()函数列出所有变量 [1] "X" "不良贷款率" "存贷款比率" "存款增长率" "贷款增长率" "流动比率" "收…
欢迎批评指正! 主成分分析(principal component analysis,PCA) 一.几何的角度理解PCA -- 举例:将原来的三维空间投影到方差最大且线性无关的两个方向(二维空间). 二.数学推导的角度为 -- 将原矩阵进行单位正交基变换. 且听我慢慢展开. 关于第一句话,给个图直观理解,请问,下面的三维空间中的一条鱼,在二维平面时怎么能更直观的看出,这是一条鱼? 很明显,第一种情况更直观,为什么呢? 这就是将原矩阵(三维空间)投影到了信息量最大的两个维度上(二维平面),这就是P…
主成分分析R软件实现程序(一): >d=read.table("clipboard",header=T) #从剪贴板读取数据 >sd=scale(d)  #对数据进行标准化处理 >sd  #输出标准化后的数据和属性信息,把标准化的数据拷贝到剪贴板备用 >d=read.table("clipboard",header=T)  #从剪贴板读取标准化数据 >pca=princomp(d,cor=T)  #主成分分析函数 >screepl…
1.R语言重要数据集分析研究需要整理分析阐明理念? 上一节讲了R语言作图,本节来讲讲当你拿到一个数据集的时候如何下手分析,数据分析的第一步,探索性数据分析. 统计量,即统计学里面关注的数据集的几个指标,常用的如下:最小值,最大值,四分位数,均值,中位数,众数,方差,标准差,极差,偏度,峰度 先来解释一下各个量得含义,浅显就不说了,这里主要说一下不常见的 众数:出现次数最多的 方差:每个样本值与均值的差得平方和的平均数 标准差:又称均方差,是方差的二次方根,用来衡量一个数据集的集中性 极差:最大值…
R语言:recommenderlab包的总结与应用案例   1. 推荐系统:recommenderlab包整体思路 recommenderlab包提供了一个可以用评分数据和0-1数据来发展和测试推荐算法的框架.它提供了几种基础算法,并可利用注册机制允许用户使用自己的算法recommender包的数据类型采用S4类构造. (1)评分矩阵数据接口:使用抽象的raringMatrix为评分数据提供接口.raringMatrix采用了很多类似矩阵对象的操作,如 dim(),dimnames() ,row…
转载生信技能树 https://mp.weixin.qq.com/s/JB_329LCWqo5dY6MLawfEA TCGA数据源 - R包RTCGA的简单介绍 - 首先安装及加载包 - 指定任意基因从任意癌症里面获取芯片表达数据 - 绘制指定基因在不同癌症的表达量区别boxplot - 更多boxplot参数 - 指定任意基因从任意癌症里面获取测序表达数据 - 用全部的rnaseq的表达数据来做主成分分析 - 用5个基因在3个癌症的表达量做主成分分析 - 用突变数据做生存分析 - 多个基因在多…
R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间的语句就是是注释. R是动态类型.强类型的语…
一,前提准备         1.R语言包:ggplot2包(绘图),recommenderlab包,reshape包(数据处理)         2.获取数据:大家可以在明尼苏达州大学的社会化计算研究中心官网上面下载这些免费数据集,网站链接为http://grouplens.org/datasets/movielens/,也可以通过网盘下载https://yunpan.cn/Oc6R9apvCnVXGc访问密码 e1af.这里包含了数据集和数据说明,该数据集是由943位用户对1682部电影的一…
本文对应<R语言实战>第14章:主成分和因子分析 主成分分析(PCA)是一种数据降维技巧,它能将大量相关变量转化为一组很少的不相关变量,这些无关变量成为主成分. 探索性因子分析(EFA)是一系列用来发现一组变量的潜在结构的方法.通过寻找一组更小的.潜在的或隐藏的结构来解释已观测到的.显式的变量间的关系. 这两种方法都需要大样本来支撑稳定的结果,但是多大是足够的也是一个复杂的问题.目前,数据分析师常使用经验法则:因子分析需要5~10倍于变量数的样本数.另外有研究表明,所需样本量依赖于因子数目.与…
R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间的语句就…
[R笔记]R语言函数总结   R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(…
引言 一监督学习 二无监督学习 三强化学习 四通用机器学习算法列表 线性回归Linear Regression 逻辑回归Logistic Regression 决策树Decision Tree 支持向量机SVM Support Vector Machine 朴素贝叶斯Naive Bayes K近邻KNN K- Nearest Neighbors K均值K-Means K-means如何形成群类 随机森林Random Forest 降维算法Dimensionality Reduction Algo…
原博: R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间…
R 语言实战(第二版) part 4 高级方法 -------------第13章 广义线性模型------------------ #前面分析了线性模型中的回归和方差分析,前提都是假设因变量服从正态分布 #广义线性模型对非正态因变量的分析进行扩展:如类别型变量.计数型变量(非负有限值) #glm函数,对于类别型因变量用logistic回归,计数型因变量用泊松回归 #模型参数估计的推导依据的是最大似然估计(最大可能性估计),而非最小二乘法 #1.logistic回归 library(AER) d…
recommend li_volleyball 2016年3月20日 library(recommenderlab) library(ggplot2) # data(MovieLense) dim(MovieLense) ## [1] 943 1664 MovieLense ## 943 x 1664 rating matrix of class 'realRatingMatrix' with 99392 ratings. image(sample(MovieLense,500),main="R…
数据结构 创建向量和矩阵 函数c(), length(), mode(), rbind(), cbind() 求平均值,和,连乘,最值,方差,标准差 函数mean(), sum(), min(), max(), var(), sd(), prod() 帮助文档 函数help() 生成向量 seq() 生成字母序列letters 新建向量 Which()函数,rev()函数,sort()函数 生成矩阵 函数matrix() 矩阵运算 函数t(),矩阵加减 矩阵运算 矩阵相乘,函数diag() 矩阵…
随着大数据在各行业的落地生根和蓬勃发展,能从数据中挖金子的数据分析人员越来越宝贝,于是很多的程序员都想转行到数据分析, 挖掘技术哪家强?当然是R语言了,R语言的火热程度,从TIOBE上编程语言排名情况可见一斑.于是善于学习的程序员们开始了R语言的学习 之旅.对于有其他语言背景的程序员来说,学习R的语法小菜一碟,因为它的语法的确太简单了,甚至有的同学说1周就能掌握R语言,的确如 此.但是之后呢?……好像进行不下去了!死记硬背记住了两个分析模型却不明其意,输出结果如同天书不会解读,各种参数全部使用缺…
数据分析R语言 无意中发现网上的一个数据分析R应用教程,看了几集感觉还不错,本文做一个学习笔记(知识点来源:视频内容+R实战+自己的理解),视频详细的信息请参考http://www.itao521.com/course/34,非常不错的网站,站长的Q群是323370861(这个群的童鞋们都很给力,学习也很上进,各种团购买hadoop,nosql,spark的视频学习),我网站会员ID是515,也欢迎各方朋友交流,OK,开始        统计的一些基础概念,如下图所示,        数据分析常…
对于初学R语言的人,最常见的方式是:遇到不会的地方,就跑到论坛上吼一嗓子,然后欣然or悲伤的离去,一直到遇到下一个问题再回来.当然,这不是最好的学习方式,最好的方式是——看书.目前,市面上介绍R语言的书籍很多,中文英文都有.那么,众多书籍中,一个生手应该从哪一本着手呢?入门之后如何才能把自己练就成某个方面的高手呢?相信这是很多人心中的疑问.有这种疑问的人有福了,因为笔者将根据自己的经历总结一下R语言书籍的学习路线图以使Ruser少走些弯路. 本文分为6个部分,分别介绍初级入门,高级入门,绘图与可…
#清除内存空间 rm(list=ls()) #导入tm包 library(tm) library(SnowballC) #查看tm包的文档 #vignette("tm") ##1.Data Import 导入自带的路透社的20篇xml文档 #找到/texts/crude的目录,作为DirSource的输入,读取20篇xml文档 reut21578 <- system.file("texts", "crude", package = &quo…
案例:通过使用R语言的聚类算法将用户进行合理的划分,找出对超市贡献度,光临度最高的优质客户,对后期的推广有更深远的影响 1.导入包 library(dplyr) library(reshape2) library(cluster) library(fpc) library(mclust) 2.加载数据集 options(digits = 18) #小数可以显示到第18位 lss_all_cust_ls_info <- read.table('E:\\Udacity\\Data Analysis…
R语言常用函数 基本 一.数据管理vector:向量 numeric:数值型向量 logical:逻辑型向量character:字符型向量 list:列表 data.frame:数据框c:连接为向量或列表 length:求长度 subset:求子集seq,from:to,sequence:等差序列rep:重复 NA:缺失值 NULL:空对象sort,order,unique,rev:排序unlist:展平列表attr,attributes:对象属性mode,typeof:对象存储模式与类型nam…
本文对应<R语言实战>第11章:中级绘图:第16章:高级图形进阶 基础图形一章,侧重展示单类别型或连续型变量的分布情况:中级绘图一章,侧重展示双变量间关系(二元关系)和多变量间关系(多元关系)的绘图:高级绘图进阶一章介绍四种图形系统,主要介绍lattice和ggplot2包. ========================================================================= 散点图: 主要内容:把多个散点图组合起来形成一个散点图矩阵,以便可以同时…
一.引言 近年来,随着分布式数据处理技术的不断革新,Hive.Spark.Kylin.Impala.Presto 等工具不断推陈出新,对大数据集合的计算和存储成为现实,数据仓库/商业分析部门日益成为各类企业和机构的标配.在这种背景下,是否能探索和挖掘数据价值,具备精细化数据运营的能力,就成为判定一个数据团队成功与否的关键. 在数据从后台走向前台的过程中,数据展示是最后一步关键环节.与冰冷的表格展示相比,将数据转化成图表并进行适当的内容组织,往往能更快速.更直观的传递信息,进而更好的提供决策支持.…
异常值检测 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou,密码shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到程序: 1. LX终端(LXTerminal): Linux命令行终端,打开后会进入Bash环境,可以使用Linux命令2. GVim:非常好用的编辑器,最简单的用法可以参考课程[Vim编辑器](http://www.shiyanlou.com/courses/2)3. R:在命令行输入‘R’进入交互式环…