pytorch中的Linear Layer(线性层)】的更多相关文章

LINEAR LAYERS Linear Examples: >>> m = nn.Linear(20, 30) >>> input = torch.randn(128, 20) >>> output = m(input) >>> print(output.size()) torch.Size([128, 30]) 查看源码后发现U指的是均匀分布,即weight权重(A的转置)是取自输入尺寸的倒数再开方后的正负值之间的均匀分布,同理可…
[转载]Pytorch中nn.Linear module的理解 本文转载并援引全文纯粹是为了构建和分类自己的知识,方便自己未来的查找,没啥其他意思. 这个模块要实现的公式是:y=xAT+*b 来源:https://blog.csdn.net/u012936765/article/details/52671156 Linear 是module的子类,是参数化module的一种,与其名称一样,表示着一种线性变换. 创建 parent 的init函数 Linear的创建需要两个参数,inputSize…
Faster-RCNN论文中在RoI-Head网络中,将128个RoI区域对应的feature map进行截取,而后利用RoI pooling层输出7*7大小的feature map.在pytorch中可以利用: torch.nn.functional.adaptive_max_pool2d(input, output_size, return_indices=False) torch.nn.AdaptiveMaxPool2d(output_size, return_indices=False)…
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson3/nn_layers_others.py 这篇文章主要介绍了 PyTorch 中的池化层.线性层和激活函数层. 池化层 池化的作用则体现在降采样:保留显著特征.降低特征维度,增大 kernel 的感受野. 另外一点值得注意:pooling 也可以提供一些旋转不变性. 池化层可对提取到的特征信息进行降维,一方面使特征图变小,简化网络计算复杂度并在一定程度上避…
torch.nn 是专门为神经网络设计的模块化接口,nn构建于autgrad之上,可以用来定义和运行神经网络 nn.Module 是nn中重要的类,包含网络各层的定义,以及forward方法 对于自己定义的网络,需要注意以下几点: 1)需要继承nn.Module类,并实现forward方法,只要在nn.Module的子类中定义forward方法,backward函数就会被自动实现(利用autograd机制) 2)一般把网络中可学习参数的层放在构造函数中__init__(),没有可学习参数的层如R…
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/weixin_42279044/article/details/101053719 关于数据格式 默认日常描述图片尺寸,采用[w,h]的形式,比如一张图片是1280*800就是指宽w=1280, 高h=800. 因此在cfg中所指定img scale = [1333, 800]就是指w=1333, h=800 从而转入计算机后,要从w,h变成…
转载:https://zhuanlan.zhihu.com/p/53927068 https://blog.csdn.net/wangdongwei0/article/details/88956527 pytorch最后的权重文件是.pth格式的. 经常遇到的问题: 进行finutune时,改配置文件中的学习率,发现程序跑起来后竟然保持了以前的学习率, 并没有使用新的学习率. 原因: 首先查看.pth文件中的内容,我们发现它其实是一个字典格式的文件: 其中保存了optimizer和schedul…
介绍 深度学习现在是一个非常猖獗的领域 - 有如此多的应用程序日复一日地出现.深入了解深度学习的最佳方法是亲自动手.尽可能多地参与项目,并尝试自己完成.这将帮助您更深入地掌握主题,并帮助您成为更好的深度学习实践者. 在本文中,我们将看一个有趣的多模态主题,我们将结合图像和文本处理来构建一个有用的深度学习应用程序,即图像字幕.图像字幕是指从图像生成文本描述的过程 - 基于图像中的对象和动作.例如: 这个过程在现实生活中有很多潜在的应用.值得注意的是保存图像的标题,以便仅在此描述的基础上可以在稍后阶…
      初学神经网络和pytorch,这里参考大佬资料来总结一下有哪些激活函数和损失函数(pytorch表示)      首先pytorch初始化:   import torch import torch.nn.functional as F from torch.autograd import Variable import matplotlib.pyplot as plt x = torch.linspace(-5, 5, 200) # 构造一段连续的数据 x = Variable(x)…
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson3/nn_layers_convolution.py 这篇文章主要介绍了 PyTorch 中常用的卷积层,包括 3 个部分. 1D/2D/3D 卷积 卷积有一维卷积.二维卷积.三维卷积.一般情况下,卷积核在几个维度上滑动,就是几维卷积.比如在图片上的卷积就是二维卷积. 一维卷积 二维卷积 三维卷积 二维卷积:nn.Conv2d() nn.Conv2d(sel…