CRF++模板使用(转)】的更多相关文章

CRF++模板构建分为两类,一类是Unigram标注,一类是Bigram标注. Unigram和Bigram模板分别生成CRF的状态特征函数  和转移特征函数  .其中  是标签,  是观测序列,  是当前节点位置.Bigram 下面只需要加一个B就ok了,其它还是用Unigram模板生成特征. 主要介绍Unigram模板 Unigram U00:%x[-2,0] U01:%x[-1,0] U02:%x[0,0] U03:%x[1,0] U04:%x[2,0] U05:%x[-2,0]/%x[-…
1.CRF++的详细解析 完成的是学习和解码的过程:训练即为学习的过程,预测即为解码的过程. 模板的解析: 具体参考hanlp提供的: http://www.hankcs.com/nlp/the-crf-model-format-description.html Unigram和Bigram模板分别生成CRF的状态特征函数和转移特征函数.其中是标签,x是观测序列,i是当前节点位置.每个函数还有一个权值. 注意:一般定义CRF++的模板只定义Unigram即为CRF的状态特征函数(对于观测状态不同…
工具的简单介绍 对该工具的安装及介绍我这里就不再赘述,请参考官方文档或者国内一些翻译后的中文版.也还比较清楚. 我只介绍一下crf++在命名实体识别中的一些用法,这些都建立在你了解crf++的一些最基本概念的基础上,目的在于清楚自己该如何制定自己的特征模板. 原文请见 http://www.poised-flw.com/record/2013/04/19/useage-of-crf/…
1. 简述 最近要应用CRF模型,进行序列识别.选用了CRF++工具包,具体来说是在VS2008的C#环境下,使用CRF++的windows版本.本文总结一下了解到的和CRF++工具包相关的信息. 参考资料是CRF++的官方网站:CRF++: Yet Another CRF toolkit,网上的很多关于CRF++的博文就是这篇文章的全部或者部分的翻译,本文也翻译了一些. 2. 工具包下载 第一,版本选择,当前最新版本是2010-05-16日更新的CRF++ 0.54版本,不过这个版本以前我用过…
http://blog.csdn.net/xmdxcsj/article/details/48790317 Crf模型 1.   定义 一阶(只考虑y前面的一个)线性条件随机场: 相比于最大熵模型的输入x和输出y,crf模型的输入输出都是序列化以后的矢量,是对最大熵模型的序列扩展. 相比于最大熵模型的另外一个不同是,crf多出了一个维度j(j表示序列x的位置),即任意一个输出yi,都跟所有的输入x有关. 经过变换,crf概率模型可以转化为: 先求一个位置x的所有特征,再求所有位置x 先求一个维度…
http://blog.csdn.net/marising/article/details/5769653 前段时间写了中文分词的一些记录里面提到了CRF的分词方法,近段时间又研究了一下,特把方法写下来,以备忘,另外,李沫南同学优化过CRF++,见:http://www.coreseek.cn/opensource/CRF/.我觉得CRF++还有更大的优化空间,以后有时间再搞. 人民日报语料是分好词的,我下面贴出的代码就是把语料整理为CRF需要的训练数据,直接修改模板训练即可.不过有下面的同学给…
很久前做过一个命名实体识别的模块,现在有时间,记录一下. 一.要识别的对象 人名.地名.机构名 二.主要方法 1.使用CRF模型进行识别(识别对象都是最基础的序列,所以使用了好评率较高的序列识别算法CRF) 2.使用规则对相关数据进行后过滤. 三.具体实现 1.训练数据的生成 主要使用了人民日报免费部分,以及一些及它从网上找到的资源(时间长了,记不住了,好像还自己标注了些) 2.模板的生成    使用的是Unigram,由于考虑到要识别的实体一般情况下没有长距离依赖 以及训练时的效率问题,所以模…
1. 简述 近期要应用CRF模型,进行序列识别.选用了CRF++工具包,详细来说是在VS2008的C#环境下,使用CRF++的windows版本号.本文总结一下了解到的和CRF++工具包相关的信息. 參考资料是CRF++的官方站点:CRF++: Yet Another CRF toolkit,网上的非常多关于CRF++的博文就是这篇文章的所有或者部分的翻译,本文也翻译了一些. 2. 工具包下载 第一,版本号选择,当前最新版本号是2010-05-16日更新的CRF++ 0.54版本号,只是这个版本…
最近在用CRF做未登录技能词识别,虽然艰难,但是感觉很爽,效率非常高. (1)数据准备: 选取30000行精语料作为训练数据.每一个br作为一条数据.使用已有的技能词典对数据进行无标注分词. (2)训练数据标注: 对分词后的语料进行标注.如果某分词结果在技能词典中,则该词作为技能词进行标注:如果某分词结果不在词典中,则该词作为与技能无关词进行标注.标注规则如下: 标注采用3列,4-tag方式标注:B:技能词开头字:M:技能词中间字:E:技能词结尾字:A:与技能词无关字. (3)修改模板: 技能词…
LSTM 原理 CRF 原理 给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型.假设输出随机变量构成马尔科夫随机场(概率无向图模型)在标注问题应用中,简化成线性链条件随机场,对数线性判别模型,学习方法通常是最大似然估计或正则化的最大似然估计. 概率无向图模型: 无向图表示的联合概率分布. 1. 定义: 成对马尔科夫性,局部马尔科夫性,全局马尔科夫性, 上述三个性质定义等价,主要阐述,三个集合,A, B, C,其中集合A和B表示在无向图G中被结点集合C分开的任意结点集合 给定随机变量…