1. RF 随机森林基于Bagging的策略是Bagging的扩展变体,概括RF包括四个部分:1.随机选择样本(放回抽样):2.随机选择特征(相比普通通bagging多了特征采样):3.构建决策树:4.随机森林投票(平均). 在构建决策树的时候,RF的每棵决策树都最大可能的进行生长而不进行剪枝:在对预测输出进行结合时,RF通常对分类问题使用简单投票法,回归任务使用简单平均法. RF的重要特性是不用对其进行交叉验证或者使用一个独立的测试集获得无偏估计,它可以在内部进行评估,也就是说在生成的过程中可…
目录 1.基本知识点介绍 2.各个算法原理 2.1 随机森林 -- RandomForest 2.2 XGBoost算法 2.3 GBDT算法(Gradient Boosting Decision Tree) 2.4 LightGBM提升学习模型 1.基本知识点介绍 RandomForest.XGBoost.GBDT和LightGBM都属于集成学习. 集成学习通过构建并结合多个分类器来完成学习任务,也称为多分类系统,集成学习的目的是通过结合多个机器学习分类器的预测结果来改善基本学习器的泛化能力和…
总的认识: LightGBM  > XGBOOST  > GBDT 都是调参数比较麻烦. GBDT分类的最佳调参数的讲解: Gradient Boosting Machine(GBM)调参方法详解 其次 scikit-learn 梯度提升树(GBDT)调参小结 LightGBM学习资料: LightGBM——提升机器算法(图解+理论+安装方法+python代码) 比xgboost强大的LightGBM:调参指南(带贝叶斯优化代码) LightGBM 调参方法(具体操作)…
1.  RF(随机森林)与GBDT之间的区别 相同点: 1)都是由多棵树组成的 2)最终的结果都是由多棵树一起决定 不同点: 1)  组成随机森林的树可以是分类树也可以是回归树,而GBDT只由回归树组成 2)  组成随机森林的树可是并行生成,而GBDT只能是串行生成 3)  随机森林的结果是多棵树表决决定,而GBDT则是多棵树累加之和 4)  随机森林对异常值不敏感,而GBDT对异常值比较敏感 5)  随机森林是通过减少模型的方差来提高性能,而GBDT是减少模型的偏差来提高性能 6)  随机森林…
GBDT和xgboost在竞赛和工业界使用都非常频繁,能有效的应用到分类.回归.排序问题,虽然使用起来不难,但是要能完整的理解还是有一点麻烦的.本文尝试一步一步梳理GB.GBDT.xgboost,它们之间有非常紧密的联系,GBDT是以决策树(CART)为基学习器的GB算法,xgboost扩展和改进了GDBT,xgboost算法更快,准确率也相对高一些. 1. Gradient boosting(GB) 机器学习中的学习算法的目标是为了优化或者说最小化loss Function, Gradient…
Boosting方法实际上是采用加法模型与前向分布算法.在上一篇提到的Adaboost算法也可以用加法模型和前向分布算法来表示.以决策树为基学习器的提升方法称为提升树(Boosting Tree).对分类问题决策树是CART分类树,对回归问题决策树是CART回归树. 1.前向分布算法 引入加法模型 在给定了训练数据和损失函数$L(y, f(x))$ 的条件下,可以通过损失函数最小化来学习加法模型 然而对于这个问题是个很复杂的优化问题,而且要训练的参数非常的多,前向分布算法的提出就是为了解决模型的…
RF.GBDT和XGBoost都属于集成学习(Ensemble Learning),集成学习的目的是通过结合多个基学习器的预测结果来改善单个学习器的泛化能力和鲁棒性.  根据个体学习器的生成方式,目前的集成学习方法大致分为两大类:即个体学习器之间存在强依赖关系.必须串行生成的序列化方法,以及个体学习器间不存在强依赖关系.可同时生成的并行化方法:前者的代表就是Boosting,后者的代表是Bagging和“随机森林”(Random Forest). 1. GBDT和XGBoost区别 XGBOOS…
GBDT和xgboost在竞赛和工业界使用都非常频繁,能有效的应用到分类.回归.排序问题,虽然使用起来不难,但是要能完整的理解还是有一点麻烦的.本文尝试一步一步梳理GB.GBDT.xgboost,它们之间有非常紧密的联系,GBDT是以决策树(CART)为基学习器的GB算法,xgboost扩展和改进了GDBT,xgboost算法更快,准确率也相对高一些. 1. Gradient boosting(GB) 机器学习中的学习算法的目标是为了优化或者说最小化loss Function, Gradient…
把之前学习xgb过程中查找的资料整理分享出来,方便有需要的朋友查看,求大家点赞支持,哈哈哈 作者:tangg, qq:577305810 一.Boosting算法 boosting算法有许多种具体算法,包括但不限于ada boosting \ GBDT \ XGBoost . 所谓 Boosting ,就是将弱分离器 f_i(x) 组合起来形成强分类器 F(x) 的一种方法. 1. Ada boosting 每个子模型模型都在尝试增强(boost)整体的效果,通过不断的模型迭代,更新样本点的权重…
一: 提升方法概述 提升方法是一种常用的统计学习方法,其实就是将多个弱学习器提升(boost)为一个强学习器的算法.其工作机制是通过一个弱学习算法,从初始训练集中训练出一个弱学习器,再根据弱学习器的表现对训练样本分布进行调整,使得先前弱学习器做错的训练样本在后续受到更多的关注,然后基于调整后的样本分布来训练下一个弱学习器.如此反复学习 ,得到一系列的弱学习器,然后 组合这些弱学习器,构成一个强学习器.提升方法生成的弱学习器之间存在强依赖关系,必须串行生成一系列的弱学习器.目前提升方法主要有 Ad…