论文地址:https://graz.pure.elsevier.com/en/publications/acoustic-echo-cancellation-with-cross-domain-learning 具有跨域学习的声学回声消除 摘要: 本文提出了跨域回声控制器(CDEC),提交给 Interspeech 2021 AEC-Challenge.该算法由三个构建块组成:(i) 时延补偿 (TDC) 模块,(ii) 基于频域块的声学回声消除器 (AEC),以及 (iii) 时域神经网络 (…
论文地址:https://indico2.conference4me.psnc.pl/event/35/contributions/3364/attachments/777/815/Thu-1-10-4.pdf 一种基于深度学习的鲁棒级联回声消除算法 摘要 AEC是用来消除扬声器和麦克风之间的反馈.理想情况下,AEC是一个线性问题,可以通过自适应滤波来解决.然而,在实际应用中,有两个重要的问题严重影响AEC的性能,即1)双讲问题和2)主要由扬声器和/或功率放大器引起的非线性失真.针对这两个问题,…
论文地址:面向基于深度学习的语音增强模型压缩 论文代码:没开源,鼓励大家去向作者要呀,作者是中国人,在语音增强领域 深耕多年 引用格式:Tan K, Wang D L. Towards model compression for deep learning based speech enhancem…
论文地址:深度学习用于噪音和双语场景下的回声消除 博客地址:https://www.cnblogs.com/LXP-Never/p/14210359.html 摘要 传统的声学回声消除(AEC)通过使用自适应算法识别声学脉冲响应来工作. 我们将AEC公式化为有监督的语音分离问题,该问题将说话人信号和近端信号分开,以便仅将后者传输到远端. 训练双向长短时记忆的递归神经网络(BLSTM)对从近端和远端混合信号中提取的特征进行估计.然后应用BLSTM估计的理想比率掩模来分离和抑制远端信号,从而去除回波…
论文地址:https://dl.acm.org/doi/abs/10.1145/3330393.3330399 基于深度神经网络的回声消除回归方法 摘要 声学回声消除器(AEC)的目的是消除近端传声器接收到的混合信号中的声学回声.传统的方法是使用自适应有限脉冲响应(FIR)滤波器来识别房间脉冲响应(RIR),因为房间脉冲响应对各种野外场景都不具有鲁棒性.在本文中,我们提出了一种基于深度神经网络的回归方法,从近端和远端混合信号中提取的特征直接估计近端目标信号的幅值谱.利用深度学习强大的建模和泛化能…
论文地址:https://arxiv.53yu.com/abs/2005.09237 自适应数字滤波与循环神经网络相结合的回声消除技术 摘要 回声消除(AEC)在语音交互中起关键作用.由于明确的数学原理和适应条件的智能特性,具有不同实现类型的自适应滤波器始终用于AEC,从而提供了可观的性能.但是,结果中会存在某种残留回波,包括估计和实际之间不匹配引起的线性残留以及主要由音频设备上的非线性分量引起的非线性残留.可以通过精细的结构和方法减少线性残留,但非线性残留难以抑制.尽管已经提出了一些非线性处理…
论文地址:http://www.interspeech2020.org/uploadfile/pdf/Thu-1-10-10.pdf Attention Wave-U-Net 的回声消除 摘要 提出了一种基于U-Net的具有注意机制的AEC方法,以联合抑制声学回声和背景噪声.该方法由U-Net.一个辅助编码器和一个注意网络组成.在该方法中,Wave-U-Net从混合语音中提取估计的近端语音,辅助编码器提取远端语音的潜在特征,其中相关特征通过注意机制提供给Wave-U-Net.利用注意网络,可以有…
论文地址:https://ieeexplore.ieee.org/abstract/document/9306224 基于RNN的回声消除 摘要 本文提出了一种基于深度学习的语音分离技术的回声消除方法.传统上,AEC使用线性自适应滤波器来识别麦克风和扬声器之间的声脉冲响应.然而,当传统方法遇到非线性条件时,处理的结果并不理想.我们的实践利用了深度学习技术的优势,这有利于非线性处理.在所采用的RNN系统中,与传统的语音分离方法不同,我们增加了单讲特征,并为每个元素分配特定的权重.实验结果表明,该方…
论文地址:https://ieeexploreieee.53yu.com/abstract/document/9414715 Netshell 中的 AEC:关于 FCRN 声学回声消除的目标和拓扑选择 摘要: 声学回声消除(AEC)算法在信号处理中具有长期稳定的作用,其方法可以改善诸如汽车免提系统.智能家居和扬声器设备或网络会议系统等应用的性能.就在最近,第一个基于深度神经网络(DNN)的方法被提出,采用DNN联合进行AEC和残余回声抑制(RES)/噪声降低,在回声抑制性能方面有显著改善.另一…
论文地址:https://arxiv.53yu.com/abs/2106.07577 基于 F-T-LSTM 复杂网络的联合声学回声消除和语音增强 摘要 随着对音频通信和在线会议的需求日益增加,在包括噪声.混响和非线性失真在内的复杂声学场景下,确保声学回声消除(AEC)的鲁棒性已成为首要问题.尽管已经有一些传统的方法考虑了非线性失真,但它们对于回声抑制仍然效率低下,并且在存在噪声时性能会有所衰减.在本文中,我们提出了一种使用复杂神经网络的实时 AEC 方法,以更好地建模重要的相位信息和频率时间…