使用Kettle增量抽取MongoDB数据实践】的更多相关文章

需求: 增量抽取MongoDB数据并加载到MSSQL 由于不能使用关系型数据库的自定义SQL, 所以主要遇到的问题有: 增量时间的查询和参数控制 ETL的批次信息和调用参数的写入 第一个问题的解决如下: 使用命名参数在Query页中进行过滤, 一开始会担心${}的引用方式会用Mongo的语法冲突, 测试后发现运行正常 第二个问题: 先为结果增加常量值, 如常量值固定则直接写死, 不固定的常量值先设置为空串, 在后面使用字符串替换组件传入命名参数, 最后用字段选择把空串的常量值移除…
环境说明 centos7(运行于vbox虚拟机) flume1.9.0(自定义了flume连接mongodb的source插件) jdk1.8 kafka(2.11) zookeeper(3.57) mongoDB4.0.0(无密码) xshell 7 自定义flume插件 由于flume对数据库的支持欠缺,flume的source组件中,没有组件适用于连接关系型数据库或非关系型数据库. 对于关系型数据库(RDB),github中开源插件flume-ng-sql-source被广泛用于对接RDB…
写这篇博客的目的 让更多的人了解 阿里开源的MongoShake可以很好满足mongodb到kafka高性能高可用实时同步需求(项目地址:https://github.com/alibaba/MongoShake,下载地址:https://github.com/alibaba/MongoShake/releases).至此博客就结束了,你可以愉快地啃这个项目了.还是一起来看一下官方的描述: MongoShake is a universal data replication platform b…
写这篇博客的目的 让更多的人了解 阿里开源的MongoShake可以很好满足mongodb到kafka高性能高可用实时同步需求(项目地址:https://github.com/alibaba/MongoShake,下载地址:https://github.com/alibaba/MongoShake/releases).至此博客就结束了,你可以愉快地啃这个项目了.还是一起来看一下官方的描述: MongoShake is a universal data replication platform b…
场景:假设有一张表数据量很大,需要按一个时间来循环增量抽取 方法:主要是通过JOB自身调用,实现循环调用,类似于 函数自调用 的循环. 1.JOB全图: 2.获取增量时间,并设置增量时间环境变量 3.通过增量环境变更,获取本次 增量数据 4.判断增量时间是否大于当前时间,判断是否继续执行一次的增量 5.调用总JOB自身,实现循环调用…
ETL中的数据增量抽取机制 (     增量抽取是数据仓库ETL(extraction,transformation,loading,数据的抽取.转换和装载)实施过程中需要重点考虑的问 题.在ETL过程中,增量更新的效率和可行性是决定ETL实施成败的关键问题之一,ETL中的增量更新机制比较复杂,采用何种机制往往取决于源数据系统的 类型以及对增量更新性能的要求. 1 ETL概述 ETL包括数据的抽取.转换.加载.①数据抽取:从源数据源系统抽取目的数据源系统需要的数据:②数据转换:将从源数据源获取的…
网址:http://www.cnblogs.com/shuaifei/p/4469526.html 最近的项目中需要对上百万级的数据进行增量抽取操作,因此了解了一下TIMESTAMP的应用,特此记录 timestamp -- 时间戳:数据库中自动生成的唯一二进制数字,与时间和日期无关的, 通常用作给表行加版本戳的机制.存储大小为 8个字节 每个数据库都有一个计数器,当对数据库中包含 timestamp 列的表执行插入或更新操作时,该计数器值就会增加.该计数器是数据库时间戳.这 可以跟踪数据库内的…
MongoDB功能预览:http://pan.baidu.com/s/1k2UfW MongoDB在赶集网的应用:http://pan.baidu.com/s/1bngxgLp MongoDB在京东的使用:http://pan.baidu.com/s/1qWkawv6 MongoDB 在赶集网的应用 赶集网 DBA 选型失败的案例 选型成功的案例 服务化与运维 失败案例 不支持 join,数据库支持反范式 过多内联数据,索引庞大,性能过低 过多聚合及计算功能,数据库不堪重负 基于地理位置, mo…
为了实现数据仓库中的更加高效的数据处理,今天和小黎子一起来探讨ETL系统中的增量抽取方式.增量抽取是数据仓库ETL(数据的抽取(extraction).转换(transformation)和装载(loading))实施过程中需要重点考虑的问题.ETL抽取数据的过程中,增量抽取的效率和可行性是决定ETL实施成败的关键问题之一,做过数据建模的小伙伴都知道ETL中的增量更新机制比较复杂,采用何种机制往往取决于源数据系统的类型以及对增量更新性能的要求.今天我们只重点对各种方法进行对比分析,从而总结各种机…
1.触发器方式 触发器方式是普遍采取的一种增量抽取机制.该方式是根据抽取要求,在要被抽取的源表上建立插入.修改.删除3个触发器,每当源表中的数据发生变化,就被相应的触发器将变化的数据写入一个增量日志表,ETL的增量抽取则是从增量日志表中而不是直接在源表中抽取数据,同时增量日志表中抽取过的数据要及时被标记或删除.为了简单起见,增量日志表一般不存储增量数据的所有字段信息,而只是存储源表名称.更新的关键字值和更新操作类型(KNSEN.UPDATE或DELETE),ETL增量抽取进程首先根据源表名称和更…