k近邻算法是机器学习算法中最简单的算法之一,工作原理是:存在一个样本数据集合,即训练样本集,并且样本集中的每个数据都存在标签,即我们知道样本集中每一数据和所属分类的对应关系.输入没有标签的新数据之后,将新数据的每个特征和样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据的分类标签作为新数据的标签.一般来说,我们只选取样本数据中前k个最相似的数据. Java实现: KNNData.java package KNN; public class KNNData implements C…
这里的程序稍微有点变形.k_means方法返回K-means聚类的若干中心点.代码: import java.util.ArrayList; import java.util.Collections; public class Prophet_kmeans { private static final int MAXK = 100; private static int n = 0; private static int K = 0; private static ArrayList<Doubl…
感知机学习算法Java实现. Perceptron类用于实现感知机, 其中的perceptronOriginal()方法用于实现感知机学习算法的原始形式: perceptronAnother()方法用于实现感知机学习算法的对偶形式(此处仍有bug). import java.util.Scanner; public class Perceptron { private static final int maxn = 1010; private static final int maxm = 10…