itembase协同过滤的详细介绍】的更多相关文章

◆版权声明:本文出自胖喵~的博客,转载必须注明出处. 转载请注明出处:https://www.cnblogs.com/by-dream/p/9016289.html 前言 通常我们在网购的时候会遇到这样的情况,当我们买了一个物品A后,网站上可能会给你推荐一些和A相似的物品.这样的推荐就是典型的协同过滤算法,今天就来给大家说说协同过滤算法. 算法概念 协调过滤算法一般有两种,一种是基于物品的,一种是基于用户的,基于物品的是itembase,基于用户的是userbase,简单来说,基于物品的是当用户…
Mahout中对协同过滤算法进行了封装,看一个简单的基于用户的协同过滤算法. 基于用户:通过用户对物品的偏好程度来计算出用户的在喜好上的近邻,从而根据近邻的喜好推测出用户的喜好并推荐. 图片来源 程序中用到的数据都存在MySQL数据库中,计算结果也存在MySQL中的对应用户表中. package com.mahout.helloworlddemo; import java.sql.Connection; import java.sql.DatabaseMetaData; import java.…
来自:http://blog.csdn.net/heyutao007/article/details/8612906 Mahout支持2种 M/R 的jobs实现itemBase的协同过滤 I.ItemSimilarityJob II.RecommenderJob 下面我们对RecommenderJob进行分析,版本是mahout-distribution-0.7 源码包位置:org.apache.mahout.cf.taste.hadoop.item.RecommenderJob Recomm…
http://blog.csdn.net/dark_scope/article/details/17228643 〇.说明 本文的所有代码均可在 DML 找到,欢迎点星星. 一.引入 推荐系统(主要是CF)是我在参加百度的电影推荐算法比赛的时候才临时学的,虽然没拿什么奖,但是知识却是到手了,一直想写一篇关于推荐系统的文章总结下,这次借着完善DML写一下,权当是总结了.不过真正的推荐系统当然不会这么简单,往往是很多算法交错在一起,本文只是入门水平的总结罢了. (本文所用测试数据是movielens…
Java基础笔记 – IO流分类详细介绍和各种字节流类介绍与使用 过滤流 字节流本文由 arthinking 发表于627 天前 ⁄ Java基础 ⁄ 评论数 1 ⁄ 被围观 2,036 views+ Java IO流详细介绍 Java中流的实现是在java.io包中定义类的层次结构的. 1.分类: 1.1.按流向分类: 输入流: 程序可以从中读取数据的流. 输出流: 程序能向其中写入数据的流. 1.2.按数据传输单位分类: 字节流:以字节(8位二进制)为单位进行处理.主要用于读写诸如图像或声音…
1 集体智慧和协同过滤 1.1 什么是集体智慧(社会计算)? 集体智慧 (Collective Intelligence) 并不是 Web2.0 时代特有的,只是在 Web2.0 时代,大家在 Web 应用中利用集体智慧构建更加有趣的应用或者得到更好的用户体验.集体智慧是指在大量的人群的行为和数据中收集答案,帮助你对整个人群得到统计意义上的结论,这些结论是我们在单个个体上无法得到的,它往往是某种趋势或者人群中共性的部分. Wikipedia 和 Google 是两个典型的利用集体智慧的 Web…
因为协同过滤内容比较多,就新开一篇文章啦~~ 聚类和线性回归的实战,可以看:http://www.cnblogs.com/charlesblc/p/6159187.html 协同过滤实战,仍然参考:http://www.cnblogs.com/shishanyuan/p/4747778.html 其中有一些基础和算法类的,会有其他一些文章来做参考. 1.3 协同过滤实例 1.3.1 算法说明 协同过滤(Collaborative Filtering,简称CF,WIKI上的定义是:简单来说是利用某…
1 集体智慧和协同过滤 1.1 什么是集体智慧(社会计算)? 集体智慧 (Collective Intelligence) 并不是 Web2.0 时代特有的,只是在 Web2.0 时代,大家在 Web 应用中利用集体智慧构建更加有趣的应用或者得到更好的用户体验.集体智慧是指在大量的人群的行为和数据中收集答案,帮助你对整个人群得到统计意义上的结论,这些结论是我们在单个个体上无法得到的,它往往是某种趋势或者人群中共性的部分. Wikipedia 和 Google 是两个典型的利用集体智慧的 Web…
协同过滤 —— Collaborative Filtering 协同过滤简单来说就是根据目标用户的行为特征,为他发现一个兴趣相投.拥有共同经验的群体,然后根据群体的喜好来为目标用户过滤可能感兴趣的内容. 协同过滤推荐 —— Collaborative Filtering Recommend 协同过滤推荐是基于一组喜好相同的用户进行推荐.它是基于这样的一种假设:为一用户找到他真正感兴趣的内容的最好方法是首先找到与此用户有相似喜好的其他用户,然后将他们所喜好的内容推荐给用户.这与现实生活中的“口碑传…
1 集体智慧和协同过滤 1.1 什么是集体智慧(社会计算)? 集体智慧 (Collective Intelligence) 并不是 Web2.0 时代特有的,只是在 Web2.0 时代,大家在 Web 应用中利用集体智慧构建更加有趣的应用或者得到更好的用户体验.集体智慧是指在大量的人群的行为和数据中收集答案,帮助你对整个人群得到统计意义上的结论,这些结论是我们在单个个体上无法得到的,它往往是某种趋势或者人群中共性的部分. Wikipedia 和 Google 是两个典型的利用集体智慧的 Web…