性能度量RMSE】的更多相关文章

回归问题的典型性能度量是均方根误差(RMSE:Root Mean Square Error).如下公式. m为是你计算RMSE的数据集中instance的数量. x(i)是第i个实例的特征值向量 ,y(i)是其label(期望的模型输出).如下: X是包含了所有实例的特征值(不包含label)的矩阵.每行代表一个实例,并且每行等于x(i)向量的转置:(x(i))T . 下图矩阵中的第一行为2中向量的转置(列向量变为行向量). h是预测函数,当输入是某实例的特征向量x(i) ,应用函数之后,结果为…
在IJCAI 于2015年举办的竞赛:Repeat Buyers Prediction Competition 中, 很多参赛队伍在最终的Slides展示中都表示使用了 AUC 作为评估指标:     那么,AUC是什么呢? AUC是一个机器学习性能度量指标,只能用于二分类模型的评价.(拓展二分类模型的其他评价指标:logloss.accuracy.precision)   对于二分类问题,可将样例根据其真实类别与学习器预测类别的组合划分为真正例(true positive).假正例(false…
1.经验误差与过拟合 通常我们把分类错误的样本数占样本总数的比例称为“错误率”(error rate),即如果在m个样本中有a个样本分类错误,则错误率E=a/m:相应的,1-a/m称为“精度”(accuracy),即“精度=1一错误率”.更一般地,我(学习器的实际预测输出与样本的真实输出之间的差异称为“误差”(error),学习器在训练集上的误差称为“训练误差”(training error)或“经验误差”(empirical error),在新样本上的误差称为“泛化误差”(generaliza…
原创博文,转载请注明出处! 1.AUC AUC(Area Under ROC Curve),即ROC曲线下面积. 2.AUC意义 若学习器A的ROC曲线被学习器B的ROC曲线包围,则学习器B的性能优于学习器A的性能:若学习器A的ROC曲线和学习器B的ROC曲线交叉,则比较二者ROC曲线下的面积大小,即比较AUC的大小,AUC值越大,性能越好. 3.sklearn中计算AUC值的方法 形式: from sklearn.metrics import roc_auc_score auc_score =…
错误率 在常见的具体机器学习算法模型中,一般都使用错误率来优化loss function来保证模型达到最优. \[错误率=\frac{分类错误的样本}{样本总数}\] \[error=\frac{1}{m} \sum_{i=1}^{m} I(f(x_{i})\neq y_{i})\] 但是错误率有一个严重的缺点: 错误率会掩盖样本如何被错误分类事实,这样对于有的问题很难进行下一步的分析 混淆矩阵 confusion matrix 真正例: True Positive 真反例: True Nega…
from sklearn.metrics import mean_absolute_error,mean_squared_error #模型选择回归问题性能度量mean_absolute_error模型 def test_mean_absolute_error(): y_true=[1,1,1,1,1,2,2,2,0,0] y_pred=[0,0,0,1,1,1,0,0,0,0] print("Mean Absolute Error:",mean_absolute_error(y_tr…
import numpy as np import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.datasets import load_iris from sklearn.preprocessing import label_binarize from sklearn.multiclass import OneVsRestClassifier from sklearn.model_selection imp…
文章目录 1.背景 2.ROC曲线 2.1 ROC名称溯源(选看) 2.2 ROC曲线的绘制 3.AUC(Area Under ROC Curve) 3.1 AUC来历 3.2 AUC几何意义 3.3 AUC计算 3.4 理解AUC的意义 3.4.1 从Mann-Whitney U test角度理解 3.4.2 从AUC计算公式角度理解 3.4.3 一句话介绍AUC 3.5 为什么用AUC 3.6 AUC的一般判断标准 1.背景 很多学习器是为测试样本产生一个实值或概率预测(比如比较简单的逻辑回…
文章目录 1.错误率与精度 2.查准率.查全率与F1 2.1 查准率.查全率 2.2 P-R曲线(P.R到F1的思维过渡) 2.3 F1度量 2.4 扩展 性能度量是用来衡量模型泛化能力的评价标准,错误率.精度.查准率.查全率.F1.ROC与AUC这7个指标都是分类问题中用来衡量模型泛化能力的评价标准,也就是性能度量.本文主要介绍前五种度量,ROC与AUC讲解见超强整理,超详细解析,一文彻底搞懂ROC.AOC. 性能度量反映了任务需求,在对比不同模型的能力时,使用不同的性能度量往往会导致不同的评…
例子:一个Binary Classifier 假设我们要预测图片中的数字是否为数字5.如下面代码. X_train为训练集,每一个instance为一张28*28像素的图片,共784个features,每个feature代表某个像素的颜色强度(0-255之间).y_train_5为label, boolean类型的向量. from sklearn.linear_model import SGDClassifier sgd_clf = SGDClassifier(random_state=42)s…