变分贝叶斯VBEM 由浅入深】的更多相关文章

变分贝叶斯EM指的是变分贝叶斯期望最大化(VBEM, variational Bayes expectation maximization),这种算法基于变分推理,通过迭代寻找最小化KL(Kullback-Leibler)距离的边缘分布来近似联合分布,同时利用mean field 近似减小联合估计的复杂度. 变分贝叶斯EM方程最早是由BEAL M J. 在其论文<Variational Algorithms for Approximate Bayesian Inference>[D], Lon…
摘要:常规的神经网络权重是一个确定的值,贝叶斯神经网络(BNN)中,将权重视为一个概率分布.BNN的优化常常依赖于重参数技巧(reparameterization trick),本文对该优化方法进行概要介绍. 论文地址:http://proceedings.mlr.press/v37/blundell15.pdf 网络权重的点估计 常规神经网络可以基于MLE或MAP对权重作点估计. 基于MLE(maximum likelihood estimation): 基于MAP(maximum a pos…
NeurIPS 2018 中的贝叶斯研究 WBLUE 2018年12月21日   雷锋网 AI 科技评论按:神经信息处理系统大会(NeurIPS)是人工智能领域最知名的学术会议之一,NeurIPS 2018 已于去年 12 月 3 日至 8 日在加拿大蒙特利尔市举办.来自 Zighra.com 的首席数据科学家在参加完此次会议之后,撰写了一篇关于贝叶斯研究的参会总结,雷锋网 AI 科技评论编译整理如下. 此次会议支持现场直播,所有讲座的视频内容均可以在 NeurIPS 的 Facebook 主页…
https://blog.csdn.net/qq_20195745/article/details/82453589 贝叶斯神经网络简介 对于一个神经网络来说,最为核心的是如何根据训练集的数据,得到各层的模型参数,使得Loss最小,因其强大的非线性拟合能力而在各个领域有着重要应用.而其问题是在数据量较少的情况下存在严重的过拟合现象,对于获得数据代价昂贵的一些课题比如车辆控制等领域,应用存在局限性. 贝叶斯神经网络的优点是可以根据较少的数据得到较为solid的模型,而且得到的是各层参数的分布(一般…
粒子滤波确实是一个挺复杂的东西,从接触粒子滤波到现在半个多月,博主哦勒哇看了N多篇文章,查略了嗨多资料,很多内容都是看了又看,细细斟酌.今日,便在这里验证一下自己的修炼成果,请各位英雄好汉多多指教. 讲粒子滤波之前,还得先讲一个叫”贝叶斯滤波”的东西,因为粒子滤波是建立在贝叶斯滤波的基础上的哩.说太多抽象的东西也很难懂,以目标跟踪为例,直接来看这东西是怎么回事吧: 1. 首先咋们建立一个动态系统,用来描述跟踪目标在连续时间序列上的变换情况.简单一点,我们就使用目标的位置(i,j)作为这个动态系统…
--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------…
这篇文章做了什么 朴素贝叶斯算法是机器学习中非常重要的分类算法,用途十分广泛,如垃圾邮件处理等.而情感分析(Sentiment Analysis)是自然语言处理(Natural Language Progressing)中的重要问题,用以对文本进行正负面的判断,以及情感度评分和意见挖掘.本文借助朴素贝叶斯算法,针对文本正负面进行判别,并且利用C#进行编程实现. 不先介绍点基础? 朴素贝叶斯,真的很朴素 朴素贝叶斯分类算法,是一种有监督学习算法,通过对训练集的学习,基于先验概率与贝叶斯公式,计算出…
摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合 内容: 1.算法概述 贝叶斯分类算法是统计学的一种分类方法,其分类原理就是利用贝叶斯公式根据某对象的先验概率计算出其后验概率,然后选择具有最大后验概率的类作为该对象所属的类. 之所以称之为"朴素",是因为贝叶斯分类只做最原始.最简单的假设: 1,所有的特征之间是统计独立的; 2,所有的特征地位相同.那么假设某样本x有a1,...,aM个属性 那么有:P(x)=P(a1,...,aM…
离去年“马尔可夫链进行彩票预测”已经一年了,同时我也计划了一个彩票数据框架的搭建,分析和预测的框架,会在今年逐步发表,拟定了一个目录,大家有什么样的意见和和问题,可以看看,留言我会在后面的文章中逐步改善:彩票数据框架与分析预测总目录.同时这篇文章也是“[彩票]彩票预测算法(一):离散型马尔可夫链模型C#实现”的兄弟篇.所以这篇文章还有一个标题,应该是:[彩票]彩票预测算法(二):朴素贝叶斯分类器在足球胜平负预测中的应用及C#实现. 以前了解比较多的是SVM,RF,特征选择和聚类分析,实际也做过一…
            本博客所有文章分类的总目录:http://www.cnblogs.com/asxinyu/p/4288836.html 微软Infer.NET机器学习组件文章目录:http://www.cnblogs.com/asxinyu/p/4329742.html 关于本文档的说明 本文档基于Infer.NET 2.6对Infer.NET User Guide进行中文翻译,但进行了若干简化和提炼,按照原网站的思路进行,但不局限与其顺序. 欢迎传播分享,必须保持原作者的信息,但禁止将…