题目大意: 略 题面传送门 怎么看也是一道$duliu$题= = 先推式子,设$dp[x]$表示到达$x$点到达1节点的最小花费 设$y$是$x$的一个祖先,则$dp[x]=min(dp[y]+(dis[x]-dis[y])*p[x]+q[x])$,且$dis[x]-dis[y] \leq lim[x]$ 猜也能猜出来是斜率优化 展开,$dp[y]=p[x]*dis[y]\;+dp[x]-dis[x]*p[x]+q[x]$ 此外,$dis$在上述式子中作为一次函数$y=kx+b$的$x$项,且$…
洛谷题目传送门 你谷无题解于是来补一发 随便百度题解,发现了不少诸如树剖\(log^3\)LCT\(log^2\)的可怕描述...... 于是来想想怎么利用题目的性质,把复杂度降下来. 首先,每个点的输出状态只有\(0/1\),于是每个点的总状态也非常有限,可以根据权值为\(1\)的儿子数量\(0-3\)分为四种,记为该点的点权. 我们都会模拟暴力过程--先改叶子节点(先默认为\(0\)改为\(1\)),如果它的父亲此时权值为\(1\)的儿子数量从原来小于\(0\)的变成大于\(0\)的,那么父…
题目链接 洛谷P3676 题解 我们先维护\(1\)为根的答案,再考虑换根 一开始的答案可以\(O(n)\)计算出来 考虑修改,记\(s[u]\)表示\(u\)为根的子树的权值和 当\(u\)节点产生\(v\)的增量时,只影响\(1\)到\(u\)路径上的\(s\),权值和都\(+v\) 而对答案的影响是 \[ \begin{aligned} \Delta ans &= \sum\limits_{i}^{k}(s_i + v)^{2} - \sum\limits_{i = 1}^{k} s_i^…
题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z 操作2: 格式: 2 x y 表示求树从x到y结点最短路径上所有节点的值之和 操作3: 格式: 3 x z 表示将以x为根节点的子树内所有节点值都加上z 操作4: 格式: 4 x 表示求以x为根节点的子树内所有节点值之和 输入输出格式 输入格式: 第一行包含4个正整数N.M.R.P,分别表示树的结点个数.操作个数…
原题链接 对于以u为根的子树,后代节点的dfn显然比他的dfn大,我们可以记录一下回溯到u的dfn,显然这两个dfn构成了一个连续区间,代表u及u的子树 剩下的就和树剖一样了 #include<cstdio> #include<algorithm> #include<cstring> #define N 100010 typedef long long ll; using namespace std; int ecnt,head[N],son[N],fa[N],sz[N…
题目:https://www.luogu.org/problemnew/show/P4719 感觉这篇博客写得挺好:https://blog.csdn.net/litble/article/details/81038415 为了动态维护DP值,首先要把它转化成一个容易维护的形式,这道题中DP状态的转移就可以转化成矩阵乘法: 于是要快速算出一个DP值,就可以矩阵连乘,用线段树维护(此时求DP值已经完全变成求区间矩阵乘积了): 可以发现,如果修改一个点的值,影响到的只有它到根的一条链: 所以树剖+线…
传送门 我们可以进行离线处理,把每一个情报员的权值设为它开始收集情报的时间 那么设询问的时间为$t$,就是问路径上有多少个情报员的权值小于等于$t-c-1$ 这个只要用主席树上树就可以解决了,顺便用树剖求一下LCA //minamoto #include<bits/stdc++.h> using namespace std; #define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?E…
传送门 woc这该死的码农题…… 把每一条边转化为它连接的两点中深度较深的那一个,然后就可以用树剖+线段树对路径进行修改了 然后顺便注意在上面这种转化之后,树剖的时候不能搞$LCA$ 然后是几个注意点 1.线段树记两个标记,一个区间覆盖,一个区间加和 2.区间覆盖的标记更新后要把区间加和的标记删除,因为覆盖后之前的加和相当于都废了 3.因为上面那个原因,pushdown的时候先下传区间覆盖标记再下传区间加和标记 4.标记更新的时候记得把答案也一起更新 5.数组开大一点!!! //minamoto…
传送门 LCT秒天秒地 树剖比较裸的题了 用线段树记录一下区间的最左边的黑点的编号(因为同一条链上肯定是最左边的深度最小,到根节点距离最近) 然后记得树剖的时候肯定是越后面的答案越优,因为深度越浅 //minamoto #include<bits/stdc++.h> using namespace std; #define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)…
传送门 据说正解是树剖套堆???然而代码看着稍微有那么一点点长…… 考虑一下整体二分,设当前二分到的答案为$mid$,如果所有大于$mid$的边都经过当前点$x$,那么此时$x$的答案必定小于等于$mid$ 然后考虑怎么判断是否所有边都经过某一个点.我们可以用树状数组+树上差分来维护,把每一条边的两个端点的值加1,他们LCA的值减1,LCA父亲的值减1,那么如果这条边经过某一个点,那么这个点子树的和必定为1 于是我们可以把所有大于mid的边都处理出来,然后判断子树的和是否等于路径条数就行了.这个…