转自:极小极大搜索方法.负值最大算法和Alpha-Beta搜索方法 1. 极小极大搜索方法    一般应用在博弈搜索中,比如:围棋,五子棋,象棋等.结果有三种可能:胜利.失败和平局.暴力搜索,如果想通过暴力搜索,把最终的结果得到的话,搜索树的深度太大了,机器不能满足,一般都是规定一个搜索的深度,在这个深度范围内进行深度优先搜索. 假设:A和B对弈,轮到A走棋了,那么我们会遍历A的每一个可能走棋方法,然后对于前面A的每一个走棋方法,遍历B的每一个走棋方法,然后接着遍历A的每 一个走棋方法,如此下去…
1. 极小极大搜索方法    一般应用在博弈搜索中,比如:围棋,五子棋,象棋等.结果有三种可能:胜利.失败和平局.暴力搜索,如果想通过暴力搜索,把最终的结果得到的话,搜索树的深度太大了,机器不能满足,一般都是规定一个搜索的深度,在这个深度范围内进行深度优先搜索.    假设:A和B对弈,轮到A走棋了,那么我们会遍历A的每一个可能走棋方法,然后对于前面A的每一个走棋方法,遍历B的每一个走棋方法,然后接着遍历A的每一个走棋方法,如此下去,直到得到确定的结果或者达到了搜索深度的限制.当达到了搜索深度限…
前言: FISTA(A fast iterative shrinkage-thresholding algorithm)是一种快速的迭代阈值收缩算法(ISTA).FISTA和ISTA都是基于梯度下降的思想,在迭代过程中进行了更为聪明(smarter)的选择,从而达到更快的迭代速度.理论证明:FISTA和ISTA的迭代收敛速度分别为O(1/k2)和O(1/k). 本篇博文先从解决优化问题的传统方法“梯度下降”开始,然后引入ISTA,最后再上升为FISTA.文章主要参考资料如下: [1] A Fas…
深度学习 (DeepLearning) 基础 [3]---梯度下降法 Introduce 在上一篇"深度学习 (DeepLearning) 基础 [2]---神经网络常用的损失函数"中我们介绍了神经网络常用的损失函数.本文将继续学习深度学习的基础知识,主要涉及基于梯度下降的一类优化算法.首先介绍梯度下降法的主要思想,其次介绍批量梯度下降.随机梯度下降以及小批量梯度下降(mini-batch)的主要区别. 以下均为个人学习笔记,若有错误望指出. 梯度下降法 主要思想:沿着梯度反方向更新相…
机器学习-02 回归模型 线性回归 评估训练结果误差(metrics) 模型的保存和加载 岭回归 多项式回归 代码总结 线性回归 绘制图像,观察w0.w1.loss的变化过程 以等高线的方式绘制梯度下降的过程 薪水预测 评估误差 把训练好的模型存入文件 加载模型 封装预测模型对象,提供薪资预测服务 岭回归 如何选择合适的超参数C? 多项式回归 基于这组数据训练多项式回归模型 案例:波士顿房屋价格数据分析与房价预测 训练回归模型,预测房屋价格 回归模型 线性回归 输入 输出 0.5 5.0 0.6…
在求解算法的模型函数时,常用到梯度下降(Gradient Descent)和最小二乘法,下面讨论梯度下降的线性模型(linear model). 1.问题引入 给定一组训练集合(training set)yi,i = 1,2,...,m,引入学习算法参数(parameters of learning algorithm)θ1,θ2,.....,θn,构造假设函数(hypothesis function)h(x)如下: 定义x0 = 1,则假设函数h(x)也可以记为以下形式: 这里xi(i = 1…
目录:[Swift]Xcode实际操作 本文将演示如何使用Reachability网络状态检测库,检测设备的网络连接状态. 需要下载一个开源的类库:[ashleymills/Reachability.swift] 这是一个用来检测设备网络状态的库. 支持自动引用计数,并且使用闭包的方式,来通知网络状态的变化. [Clone or download]下载类库. 将[Sources]->[Reachability.swift]文件拖入到项目中,只需要添加这个文件即可. ->[Finish]将文件导…
[前言] 对于矩阵(Matrix)的特征值(Eigens)求解,采用数值分析(Number Analysis)的方法有一些,我熟知的是针对实对称矩阵(Real Symmetric Matrix)的特征值和特征向量(Characteristic Vectors)求解算法——雅克比算法(Jacobi).Jacobi算法的原理和实现可以参考[https://blog.csdn.net/zhouxuguang236/article/details/40212143].通过Jacobi算法可以以任意精度近…
论文基于层级表达提出高效的进化算法来进行神经网络结构搜索,通过层层堆叠来构建强大的卷积结构.论文的搜索方法简单,从实验结果看来,达到很不错的准确率,值得学习   来源:[晓飞的算法工程笔记] 公众号 论文: Hierarchical Representations for Efficient Architecture Search 论文地址:https://arxiv.org/abs/1711.00436 Introduction   由于网络的验证需要耗费很长的时间,神经网络结构搜索计算量非常…
LMS算法,即为最小均方差,求的是误差的平方和最小. 利用梯度下降,所谓的梯度下降,本质上就是利用导数的性质来求极值点的位置,导数在这个的附近,一边是大于零,一边又是小于零的,如此而已... 而这个里,导数的正负性,是依靠误差的正负来决定的,懒得多说,大致如图:…