pandas 缺失值与空值处理】的更多相关文章

1.空值 1.1 有两种丢失数据: None: Python自带的数据类型 不能参与到任何计算中 np.nan: float类型 能参与计算,但结果总是nan # None+2 # 报错 # np.nan + 2 # 值仍然是nan 1.2 np.nan(NaN) 数组直接运算会得到nan,但可以使用np.nansum()函数来计算nan,此时视nan为0. ndarr = np.array([1,2,3,np.nan]) np.sum(ndarr) np.nansum(ndarr) Serie…
1.检查缺失值 为了更容易地检测缺失值(以及跨越不同的数组dtype),Pandas提供了isnull()和notnull()函数,它们也是Series和DataFrame对象的方法 - 示例1 import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],columns=['one', 'two', 'three']) df = df…
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print(df) print('################缺失值判断#########…
获取文中的CSV文件用于代码编程以及文章首发地址,请点击下方超链接 获取CSV,用于编程调试请点这 在本文中,我们将使用Python的Pandas库逐步完成许多不同的数据清理任务.具体而言,我们将重点关注可能是最大的数据清理任务,即 缺少值. 缺失值的来源 在深入研究代码之前,了解丢失数据的来源很重要.这是数据丢失的一些典型原因: 用户忘记填写字段. 从旧版数据库手动传输时,数据丢失. 发生编程错误. 用户选择不填写字段. 其中一些来源只是简单的随机错误.在其他时候,可能会有更深层的原因导致数据…
机器学习 什么是机器学习? 机器学习是从数据中自动分析获得规律(模型),并利用规律对未知数据进行预测 机器学习存在的目的和价值领域? 领域: 医疗.航空.教育.物流.电商 等... 目的: 让机器学习程序替换手动的步骤,减少企业的成本也提高企业的效率 jupyter lab语法使用 jupyter lab安装 命令:pip install jupyterlab 接下来了解下机器学习三剑客的前两位 numpy + pandas 的使用 一.区别Numpy:是数值计算的扩展包,它能高效处理N维数组,…
目录 第十章.jupyter入门之pandas 一.什么是pandas 二.Series 三.基本概念 四.基本运算 五.DataFrame 第十章.jupyter入门之pandas 一.什么是pandas pandas是基于numpy的一种工具,这个工具是为了解决数据分析任务而创建的 pandas纳入利润大量库及标准的数据类型,提供了高效的操作的大型的数据集所需要的工具 pandas提供了大量能使我们快捷的处理数据的函数与方法 它是python成为强大而高效的数据分析环境的重要因素之一 导入…
内容目录 1. 基础概述 2. 转换时间戳 3. 生成时间戳范围 4. DatetimeIndex 5. DateOffset对象 6. 与时间序列相关的方法 6.1 移动 6.2 频率转换 6.3 重采样 在处理时间序列的的过程中,我们经常会去做以下一些任务: 生成固定频率日期和时间跨度的序列 将时间序列整合或转换为特定频率 基于各种非标准时间增量(例如,在一年的最后一个工作日之前的5个工作日)计算“相对”日期,或向前或向后“滚动”日期 使用 Pandas 可以轻松完成以上任务. 一.基础概述…
1. 访问df结构中某条记录使用loc或者iloc属性.loc是按照index或者columns的具体值,iloc是按照其序值.访问类似于ndarray的访问,用序列分别表示一维和二维的位置. 例如:missing_data.loc['MasVnrType'] 访问index为'MasVnrType'的行(如果有多行,才需要两对中括号,里面的中括号表示index列表 missing_data.loc['MasVnrType', 'Total'] 用来访问index为'MasVnrType',co…
# 导入相关库 import numpy as np import pandas as pd 在做金融领域方面的分析时,经常会对时间进行一系列的处理.Pandas 内部自带了很多关于时间序列相关的工具,所以它非常适合处理时间序列.在处理时间序列的过程中,我们经常会去做以下一些任务: 生成固定频率日期和时间跨度的序列 将时间序列整合或转换为特定频率 基于各种非标准时间增量(例如,在一年的最后一个工作日之前的 5 个工作日)计算“相对”日期,或向前或向后“滚动”日期 使用 Pandas 可以轻松完成…
import pandas as pd data_forest_fires = pd.read_csv("data/forestfires.csv", encoding='gbk') data1 = pd.read_excel("data/original_data.xls", sheet_name="原始数据")data2 = pd.read_excel("data/original_data.xls", sheet_nam…