PGL图学习之图神经网络ERNIESage.UniMP进阶模型[系列八] 原项目链接:fork一下即可:https://aistudio.baidu.com/aistudio/projectdetail/5096910?contributionType=1 相关项目参考:(其余图神经网络相关项目见主页) 关于图计算&图学习的基础知识概览:前置知识点学习(PGL)[系列一] https://aistudio.baidu.com/aistudio/projectdetail/4982973?cont…
1.ERNIESage运行实例介绍(1.8x版本) 本项目原链接:https://aistudio.baidu.com/aistudio/projectdetail/5097085?contributionType=1 本项目主要是为了直接提供一个可以运行ERNIESage模型的环境, https://github.com/PaddlePaddle/PGL/blob/develop/examples/erniesage/README.md 在很多工业应用中,往往出现如下图所示的一种特殊的图:Te…
5.(2021.7.12)Bioinformatics-KG4SL:用于人类癌症综合致死率预测的知识图神经网络 论文标题:KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers 论文地址:https://academic.oup.com/bioinformatics/article/37/Supplement_1/i418/6319703 论文期刊:Bioinformati…
[清华NLP]图神经网络GNN论文分门别类,16大应用200+篇论文最新推荐 图神经网络研究成为当前深度学习领域的热点.最近,清华大学NLP课题组Jie Zhou, Ganqu Cui, Zhengyan Zhang and Yushi Bai同学对 GNN 相关的综述论文.模型与应用进行了综述,并发布在 GitHub 上.16大应用包含物理.知识图谱等最新论文整理推荐. GitHub 链接: https://github.com/thunlp/GNNPapers 目录            …
NLP知识图谱项目合集(信息抽取.文本分类.图神经网络.性能优化等) 这段时间完成了很多大大小小的小项目,现在做一个整体归纳方便学习和收藏,有利于持续学习. 1. 信息抽取项目合集 1.PaddleNLP之UIE技术科普[一]实例:实体识别.情感分析.智能问答 https://aistudio.baidu.com/aistudio/projectdetail/4180615?contributionType=1 NLP领域任务选择合适预训练模型以及合适的方案[规范建议][ERNIE模型首选] h…
小蚂蚁说: ACM CIKM 2018 全称是 The 27th ACM International Conference on Information and Knowledge Management,会议于2018年10月22日-26日在意大利都灵省举行.CIMK 是国际计算机学会(ACM)举办的信息检索.知识管理和数据库领域的重要学术会议.本次大会目的在于明确未来知识与信息系统发展将面临的挑战和问题,并通过征集和评估应用性和理论性强的高质量研究成果以确定未来的研究方向.本篇文章分享了蚂蚁金…
摘要:本文提出一种基于局部特征保留的图卷积网络架构,与最新的对比算法相比,该方法在多个数据集上的图分类性能得到大幅度提升,泛化性能也得到了改善. 本文分享自华为云社区<论文解读:基于局部特征保留的图卷积神经网络架构(LPD-GCN)>,原文作者:PG13 . 近些年,很多研究者开发了许多基于图卷积网络的方法用于图级表示学习和分类应用.但是,当前的图卷积网络方法无法有效地保留图的局部信息,这对于图分类任务尤其严重,因为图分类目标是根据其学习的图级表示来区分不同的图结构.为了解决该问题,这篇文章提…
摘要:本文提出了两个用于无监督的具备可解释性和鲁棒性时间序列离群点检测的自动编码器框架. 本文分享自华为云社区<解读ICDE'22论文:基于鲁棒和可解释自编码器的无监督时间序列离群点检测算法>,作者:云数据库创新Lab . 导读 本文(Robust and Explainable Autoencoders for Unsupervised Time Series Outlier Detection)是由华为云数据库创新Lab联合丹麦Aalborg University与电子科技大学发表在顶会I…
Object Detection based on Region Decomposition and Assembly AAAI2019 | 基于区域分解集成的目标检测 论文解读 作者 | 文永亮 学校 | 哈尔滨工业大学(深圳) 研究方向 | 目标检测.GAN 推荐理由: 这是一篇发表于AAAI2019的paper,文章提出了一种R-DAD的方法来对RCNN系列的目标检测方法进行改进. 研究动机: 目前主流的目标检测算法分为1 stage和2 stage的,而2 stage的目标检测方法以Fa…
Motivation: 内存相关漏洞会导致性能下降和程序崩溃,严重威胁到现代软件的安全性. 静态分析方法使用一些预定义的漏洞规则或模式来搜索不正确的内存操作,然而,定义良好的漏洞规则或模式高度依赖于专家知识,因此很难涵盖所有情况.并且大规模软件的复杂编程逻辑使得手工提取规则的难度大大提升.所以静态分析方法很难应用. 基于深度学习(DL)的方法可以自动地从先前的易受攻击代码中提取隐含的漏洞模式,而不需要专家的参与,但现有的的DL-based方法也存在着流信息利用不足和粒度粗的局限. Challen…