对角矩阵try】的更多相关文章

小结: 1.block diagonal matrix  直和 块对角矩阵 A block diagonal matrix is a block matrix that is a square matrix, and having main diagonal blocks square matrices, such that the off-diagonal blocks are zero matrices. A block diagonal matrix A has the form wher…
[抄题]: A matrix is Toeplitz if every diagonal from top-left to bottom-right has the same element. Now given an M x N matrix, return True if and only if the matrix is Toeplitz. Input: matrix = [[1,2,3,4],[5,1,2,3],[9,5,1,2]] Output: True Explanation: 1…
numpy.eye(N,M=None, k=0, dtype=<type 'float'>) 关注第一个第三个参数就行了 第一个参数:输出方阵(行数=列数)的规模,即行数或列数 第三个参数:默认情况下输出的是对角线全“1”,其余全“0”的方阵,如果k为正整数,则在右上方第k条对角线全“1”其余全“0”,k为负整数则在左下方第k条对角线全“1”其余全“0”. >>> np.eye(, dtype=int) array([[, ], [, ]]) >>> np.…
谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也小很多,更加难能可贵的是实现起来也不复杂.在处理实际的聚类问题时,个人认为谱聚类是应该首先考虑的几种算法之一.下面我们就对谱聚类的算法原理做一个总结. 1. 谱聚类概述 谱聚类是从图论中演化出来的算法,后来在聚类中得到了广泛的应用.它的主要思想是把所有的数据看做空间中的点,这些点之间可以用边连接起来.距离较远的两个点之间的边权重值较…
SVD奇异值分解: SVD是一种可靠的正交矩阵分解法.可以把A矩阵分解成U,∑,VT三个矩阵相乘的形式.(Svd(A)=[U*∑*VT],A不必是方阵,U,VT必定是正交阵,S是对角阵<以奇异值为对角线,其他全为0>)  用途:  信息检索(LSA:隐性语义索引,LSA:隐性语义分析),分解后的奇异值代表了文章的主题或者概念,信息检索的时候同义词,或者说同一主题下的词会映射为同一主题,这样就可以提高搜索效率 数据压缩:通过奇异值分解,选择能量较大的前N个奇异值来代替所有的数据信息,这样可以降低…
1 理论基础 学习Eigen人脸识别算法需要了解一下它用到的几个理论基础,现总结如下: 1.1 协方差矩阵 首先需要了解一下公式: 共公式可以看出:均值描述的是样本集合的平均值,而标准差描述的则是样本集合的各个样本点到均值的距离之平均.以一个国家国民收入为例,均值反映了平均收入,而均方差/方差则反映了贫富差距,如果两个国家国民收入均值相等,则标准差越大说明国家的国民收入越不均衡,贫富差距较大.以上公式都是用来描述一维数据量的,把方差公式推广到二维,则可得到协方差公式: 协方差表明了两个随机变量之…
--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------…
一基本知识 A是一个m*n的矩阵,那么A的SVD分解为\(A_{mn} = U_{mm}\Sigma _{mn}V^T_{nn}\),其中\(U^TU = I\),\(V^TV = I\),UV的列向量是矩阵\(A^TA\)的特征向量,V的列向量是矩阵\(AA^T\)的特征向量,\(\Sigma\)只在对角线上有非零元素,称为A的奇异值(Singular value),并按照降序排列,并且值为\(A^TA\)的特征值的算术平方根.SVD的分解不唯一. 我们知道实对称阵必正交相似于对角矩阵.这里假…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在…
很多文章说到奇异值分解的时候总是大概罗列下它的功能,并没有对功能及物理意义进行过多的阐述,现在我来对奇异值进行整理一下. 一 奇异值分解 对任意的矩阵A∈Fmn,rank(A)=r(矩阵的秩),总可以取A的如下分解:,其中U和V是正交矩阵.分别为左右奇异值向量. U是m×m阶酉矩阵:Σ是m×n阶非负实数对角矩阵:而V*,即V的共轭转置,是n×n阶酉矩阵.这样的分解就称作M的奇异值分解.Σ对角线上的元素Σii即为M的奇异值. V的列(columns)组成一套对M的正交"输入"或"…