前言 已完成数据预处理工作,具体参照: 基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(一) 设置配置文件 新建目录face_faster_rcnn 将上文已完成预数据处理的目录data移动至face_faster_rcnn目录下, 并在face_faster_rcnn目录下创建face_label.pbtxt文件,内容如下: item { id: 1 name: 'face' } 在已下载的TensorFlow Object Detecti…
在说到人脸检测我们首先会想到利用Harr特征提取和Adaboost分类器进行人脸检测(有兴趣的可以去一看这篇博客第九节.人脸检测之Haar分类器),其检测效果也是不错的,但是目前人脸检测的应用场景逐渐从室内演变到室外,从单一限定场景发展到广场.车站.地铁口等场景,人脸检测面临的要求越来越高,比如:人脸尺度多变.数量冗大.姿势多样包括俯拍人脸.戴帽子口罩等的遮挡.表情夸张.化妆伪装.光照条件恶劣.分辨率低甚至连肉眼都较难区分等.在这样复杂的环境下基于Haar特征的人脸检测表现的不尽人意.随着深度学…
前言 人脸检测标准库FDDB详细介绍了数据库和使用方法.对于训练的模型,如何评估模型的效果呢,本文对此进行介绍.说实话,参考了很多博客,但是感觉都不是很明白(当然本文也会有瑕疵),故在此记录! 测试环境 1.安装Perl: 2.安装Gnuplot: 操作步骤 1.根据训练好的模型测试数据库的人脸检测结果,并将结果输出,输出格式与要求一致即可,即out-fold-**.txt和results.txt: 检测结果格式如下: ... <image name i> <number of face…
这两天在初学目标检测的算法及步骤,其中人脸检测作为最经典的算法,于是进行了重点研究.该算法最重要的是建立人脸检测分类器,因此我用了一天的时间来学习分类器的训练.这方面的资料很多,但是能按照一个资料运行出结果的确实没有找到,因此我总结了自己的训练经验. 目标检测分为三个步骤: 1.样本的创建 2.训练分类器 3.利用训练的分类器进行目标检测 第一步:样本的创建 ◆     样本分两种: 正样本与负样本(也有人翻译成:正例样本和反例样本),其中正样本是指待检目标样本(例如人脸,汽车,鼻子等),负样本…
前段时间考研,再加上工作,时间很紧,一直没有更新博客,这几天在搞k210的目标检测模型,做个记录,遇到问题可以添加qq522414928或添加微信13473465975,共同学习 首先附上github地址,本人自己改的,绝对好用,只要有数据,就能跑通https://github.com/LiuXinyu12378/yolo-k210-face-mask 也是想在考研复试的时候可以拿出来给导师看看,证明自己会一些算法和软硬件的东西,让导师更认可自己,好了,下面简单介绍一下过程. 这个模型大概看了看…
参考网址:github:https://github.com/naisy/realtime_object_detection 2018.10.16ssd物体检测总结:切记粗略地看一遍备注就开始训练模型出现的错误:1.用branch1.5,tensorflow-gpu==1.8训练的模型在GT730,显存2g,运行不了,tensorflow-gpu==1.5没有NoMaxSuppressionv3,2.用预训练模型ssd_mobilenet_coco_2018_1_28,tensorflowgpu…
(转载请注明作者和出处 楼燚(yì)航的blog :http://www.cnblogs.com/louyihang-loves-baiyan/ 未经允许请勿用于商业用途) 本文主要是针对上一篇基于DPM的VOC-release5的版本,matlab的版本进行训练. 训练自己的数据集主要是修改pascal_data这个文件,这个是负责读取参与训练的正负样本,以下是我的的读取文件,其中我的正样本的数据格式为 1.jpg 2 x1 y1 x2 y2 x2_1 y2_1 x2_2 y2_2 图片路径之…
在计算机视觉和机器学习方向有一个特别好用但是比较低调的库,也就是dlib,与opencv相比其包含了很多最新的算法,尤其是深度学习方面的,因此很有必要学习一下.恰好最近换了一台笔记本,内含一块GTX1060的显卡,可以用来更快地跑深度学习算法.以前用公司HP的工作站配置过dlib,GPU是Quadro K420,用dlib自带的人脸识别算法(ResNet)测试过,相比较1060的速度确实要快上很多.dlib.cuda和cudnn的版本经常会更新,每次重新配置环境会遇到一些问题,在这里记下来吧.…
文章目录: OpenCV安装 安装numpy 安装opencv OpenCV使用 OpenCV测试 效果图: 注意: 图片人脸检测 程序要求: 技术实现思路 注意 本文使用的环境是:Windows+Python3.x+Anaconda 安装Python以及Anaconda的步骤本文不予以讲解了,下面主要讲的是OpenCV的安装以及使用. OpenCV安装 安装numpy 如果没有numpy的话要先下载numpy,一般安装完Anaconda后就会自带很多库,这也是我推荐使用Anaconda的原因.…
1.Easily Create High Quality Object Detectors with Deep Learning 2016/10/11 http://blog.dlib.net/2016/10/easily-create-high-quality-object.html dlib中的MMOD实现使用HOG特征提取,然后使用单个线性过滤器.这意味着它无法学习检测出具有复杂姿势变化的物体.HOG:方向梯度直方图(Histogram of oriented gradient)是在计算机…