gem5-gpu 运行 PARSEC2.1】的更多相关文章

一.命令行运行python程序时 1.首先查看哪些GPU空闲,nvidia-smi显示当前GPU使用情况. nvidia-smi 2.然后指定空闲的GPU运行python程序. CUDA_VISIBLE_DEVICES=0,2,3 python test.py 二.在python程序中指定GPU import os os.environ["CUDA_VISIBLE_DEVICES"] = "0,2,3" PS:周期性输出GPU使用情况 每 10s 显示一次GPU使用…
ubuntu16.04默认安装了python2.7和python3.5 .本教程使用python3.5 第一步:将ubuntu16.04默认的python2修改成默认使用python3 . sudo update-alternatives --install /usr/bin/python python /usr/bin/python2 100 sudo update-alternatives --install /usr/bin/python python /usr/bin/python3 1…
1.DataParallel layers (multi-GPU, distributed) 1)DataParallel CLASS torch.nn.DataParallel(module, device_ids=None, output_device=None, dim=) 实现模块级别的数据并行 该容器是通过在batch维度上将输入分到指定的device中来在给定的module应用上实现并行.在前向传播中,模块module将在每个设备device上都复制一个,然后每个复制体都会处理一部分…
1.在运行之前先查看GPU的使用情况: 指令:nvidia-smi 备注:查看GPU此时的使用情况 或者 指令:watch nvidia-smi 备注:实时返回GPU使用情况 2.指定GPU训练: 方法一.在python程序中设置: 代码:os.environ[‘CUDA_VISIBLE_DEVICES’] = ‘0’ 备注:使用 GPU 0 代码:os.environ[‘CUDA_VISIBLE_DEVICES’] = ‘0,1’ 备注:使用 GPU 0,1 方法二.在执行python程序时候…
https://blog.csdn.net/flygeda/article/details/78638824 本文主要是对近期参考的网上各位大神的博客的总结,其中,从安装系统到跑通程序过程中遇到的各种问题,笔者会详细分析,有一些问题在网上都查不到.这些环境配置上的坑希望以后不要再踩到一.安装Ubuntu 16.04双系统原文是“简书”上的大神的帖子,非常详细,笔者完全按照文章的步骤安装的,并没有遇到问题 : Win10和Ubuntu16.04双系统安装详解:Ubuntu镜像官网下载,Ubuntu…
PARSEC是针对共享内存多核处理器(CPU)的一套基准测试程序,详细介绍见wiki:http://wiki.cs.princeton.edu/index.php/PARSEC,主要参考:http://www.cs.utexas.edu/~cart/parsec_m5/,下载parsec.inputs:http://parsec.cs.princeton.edu/download.htm 阅读此教程的前提是,你已经配置好全系统模拟环境. 首先,下载所需的PARSEC应用程序,这一步已经在配置全系…
首先,导入os,再按照PCI_BUS_ID顺序,从0开始排列GPU, import os os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" 然后就可以选择用哪一个或者那几个GPU运行: os.environ[”zCUDA_VISIBLE_DEVICES”] = "0" 用0号GPU,即'/gpu:0'运行: os.environ[“CUDA_VISIBLE_DEVICES”] = “0,1” 用0号和1…
1,目的 Google Colaboratory(https://colab.research.google.com)是谷歌开放的一款研究工具,主要用于机器学习的开发和研究.这款工具现在可以免费使用,但是不是永久免费暂时还不确定.Google Colab最大的好处是给广大的AI开发者提供了免费的GPU使用!GPU型号是Tesla K80!你可以在上面轻松地跑例如:Keras.Tensorflow.Pytorch等框架. Mask R-CNN(https://github.com/matterpo…
目录 一.导言 1.1 为何要了解GPU? 1.2 内容要点 1.3 带着问题阅读 二.GPU概述 2.1 GPU是什么? 2.2 GPU历史 2.2.1 NV GPU发展史 2.2.2 NV GPU架构发展史 2.3 GPU的功能 三.GPU物理架构 3.1 GPU宏观物理结构 3.2 GPU微观物理结构 3.2.1 NVidia Tesla架构 3.2.2 NVidia Fermi架构 3.2.3 NVidia Maxwell架构 3.2.4 NVidia Kepler架构 3.2.5 NV…
CUDA基本使用方法 在介绍OpenCV中GPU模块使用之前,先回顾下CUDA的一般使用方法,其基本步骤如下: 1.主机代码执行:2.传输数据到GPU:3.确定grid,block大小: 4.调用内核函数,GPU运行程序:5.传输结果到CPU:6.继续主机代码执行. 下图是两个向量相加的简单示例程序和处理流图. 注意的问题:cu,cpp文件的组织 内核函数和其wrapper函数置于cu文件中. 在cpp文件声明wrapper函数,并调用wrapper函数. wrapper函数的声明定义需加ext…