非降序列(Increasing Sequence)例如: (1) 完全递增型序列:S={1,3,6,7,9} (2) 部分存在等于的序列:S={1,3,3,6,9} S的非降子序列:由原序列S的元素组成的(且保持元素之间的顺序不变的)组成的序列. 例如S={5,4,7,1,8,6}的子序列包括: 1个元素的:{5},{4},{7},{1},{8},{6} 等6个子序列 2个元素的:{5,7},{5,8},{5,6},{4,7},{4,8},{4,6},{7,8},{1, 8},{1,6} 等 3…
注意:抽象成以下描述即为最长非降/下降子序列问题(一维状态) 问题描述:在一个无序的序列a1,a2,a3,a4…an里,找到一个最长的序列满足:(不要求连续) ai<=aj<=ak…<=am,且i<j<k…<m.(最长非降子序列) 或 ai>aj>ak…>am,且i<j<k…<m.(最长下降子序列). 问题分析:(以最长非降子序列为例) 考虑状态数组opt[maxn]; 其中opt[i]表示a[i]时可与之前元素构成非降子序列的最大长…
之前讲到过求最长非降子序列的O(N^2)解法. 链接 这次在原来的基础上介绍一下N*logN解法. 该解法主要是维护一个数组minValue,minValue[i]表示最长上身子序列长度为i的数的最小值. 代码如下: #include <iostream> using namespace std; #define inf (1<<29) const int maxn = 100100; int n, a[maxn], minValue[maxn]; int getIndex(int…
题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(dp[k])+1,(k<i),(a[k]<a[i]) #include <stdio.h> #define MAX 1005 int a[MAX];///存数据 int dp[MAX];///dp[i]表示以a[i]为结尾的最长递增子序列(LIS)的长度 int main() { int…
一个数组求其最长递增子序列(LIS) 例如数组{3, 1, 4, 2, 3, 9, 4, 6}的LIS是{1, 2, 3, 4, 6},长度为5,假设数组长度为N,求数组的LIS的长度, 需要一个额外的数组 LIS 来记录 长度从1 到 n 慢慢变长求解的过程中 对应长度的 最长递增子序列的最小的末尾元素 解决方法 长度为1时 {3}: 将3放入LIS中,表示长度为1的时候,{3}数组的最长递增子序列的最小微元素 LIS:{3} 只有一个元素,所以 最长递增子序列就是 {3},最长递增子序列的最…
你给出一定数额的钱 i 元给我,我利用手中的硬币(m元, j元, k元...)兑换等值的钱给你,要求硬币数最少. 举例:给出1-11的钱,手中硬币有1元,3元,5元. 重点是找到状态和状态转移方程. 具体可以看这里:点击进入 引用自上面链接: 最终我们要求解的问题,可以用这个状态来表示:d(11),即凑够11元最少需要多少个硬币. 那状态转移方程是什么呢?既然我们用d(i)表示状态,那么状态转移方程自然包含d(i), 上文中包含状态d(i)的方程是:d(3)=min{d(3-1)+1, d(3-…
这次我们来讲解一个叫做"最长非下降子序列"的问题及他的O(n^2)解法. 首先我们来描述一下什么是"最长非下降子序列". 给你一个长度为n的数组a,在数组a中顺序找到最多的元素(这些元素的顺序不能乱,但是可以不连续),使得这些找出的元素最多,同时要保证找出的元素的数列中前面的元素要小于等于后面的元素,则这些元素组成的一个新的数组就是这个数组的最长非下降子序列. 符合这样的一个要求的问题就是"最长非下降子序列"问题.其中最重要的就是前一个元素的值要…
最长递增子序列是动态规划中最经典的问题之一,我们从讨论这个问题开始,循序渐进的了解动态规划的相关知识要点. 在一个已知的序列 {a1, a 2,...an}中,取出若干数组成新的序列{ai1, ai 2,...aim},其中下标 i1.i2…im保持递增,即新数列中的各个数之间依旧保持原数列中的先后顺序,那么我们称新的序列{ai1, ai 2,...aim}为原序列的一个子序列.若在子序列中,当下标 ix > iy时,aix > aiy,那么我们称这个子序列为原序列的一个递增子序列.最长递增子…
最长公共子序列LCS Lintcode 77. 最长公共子序列 LCS问题是求两个字符串的最长公共子序列 \[ dp[i][j] = \left\{\begin{matrix} & max(dp[i-1][j], dp[i][j-1]), s[i] != s[j]\\ & dp[i-1][j-1] + 1, s[i] == s[j] \end{matrix}\right. \] 许多问题可以变形为LCS问题以求解 class Solution { public: /** * @param…
最长递增子序列是动态规划中经典的问题,详细如下: 在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增,即新数列中的各个数之间依旧保持原数列中的先后顺序,那么我们称新的序列{ai1,ai2,...,aim}为原序列的一个子序列.若在子序列中,当下标ix > iy时,aix > aiy,那么我们称这个子序列为原序列的一个递增子序列.最长递增子序列问题,就是在一个给定的原序列中,求得最长递增子序列长度.…