BOW】的更多相关文章

计算机视觉中的词袋模型(Bow,Bag-of-words) Bag-of-words 读 'xw20084898的专栏'的blogBag-of-words model in computer vision Bag-of-words 模型 之前教研室有个小伙伴在做文本方面的东西,经常提及词袋模型,只知道是文本表示的一种,可是最近看的关于CV的论文中也出现BoW模型,就很好奇BoW到底是个什么东西. BoW起始可以理解为一种直方图统计,开始是用于自然语言处理和信息检索中的一种简单的文档表示方法. 和…
没日没夜的改论文生活终于要告一段落了,比起改论文,学OpenCV就是一件幸福的事情.OpenCV的发展越来越完善了,已经可以直接使用BOW函数来进行对象分类了. 简单的通过特征点分类的方法:                                                                       一.train 1.提取+/- sample的feature,每幅图提取出的sift特征个数不定(假设每个feature有128维) 2.利用聚类方法(e.g K-me…
Bag-of-words model (BoW model) 最早出现在NLP和IR领域. 该模型忽略掉文本的语法和语序, 用一组无序的单词(words)来表达一段文字或一个文档. 近年来, BoW模型被广泛应用于计算机视觉中. 与应用于文本的BoW类比, 图像的特征(feature)被当作单词(Word). 引子: 应用于文本的BoW model Wikipedia[1]上给出了如下例子: John likes to watch movies. Mary likes too. John als…
原文来自:http://www.yuanyong.org/blog/cv/bow-mode 重复造轮子并不是完全没有意义的. 这几天忙里偷闲看了一些关于BOW模型的知识,虽然自己做图像检索到目前为止并没有用到过BOW模型,不过了解一下BOW并不是一件毫无意义的事情.网上关于理解BOW模型也很多,而且也很详细,再写一点关于BOW模型的理解,无异于重新造一次轮子,不过我一直坚信重复造轮子并不是完全没有意义的,重要的是你能够从中学到很多的知识,如果可能,你甚而再这个重复造轮子的过程中发现新问题,并进行…

BOW

bag of words(NLP): 最初的Bag of words,也叫做"词袋",在信息检索中,Bag of words model假定对于一个文本,忽略其词序和语法,句法,将其仅仅看做是一个词集合,或者说是词的一个组合,文本中每个词的出现都是独立的,不依赖于其他词 是否出现,或者说当这篇文章的作者在任意一个位置选择一个词汇都不受前面句子的影响而独立选择的. Bag-of-words model (BoW model) 最早出现在NLP和IR领域. 该模型忽略掉文本的语法和语序,…
要学的东西太多,无笔记不能学~~ 欢迎关注公众号,一起分享学习笔记,记录每一颗"贝壳"~ --------------------------- 在之前的开篇提到了text2vec,笔者将其定义为R语言文本分析"No.1",她是一个文本分析的生态系统.笔者在学习之后发现开发者简直牛!基于分享精神,将自学笔记记录出来.开篇内容参考: 重磅︱R+NLP:text2vec包--New 文本分析生态系统 No.1(一,简介) 文档可以以多种方式表达,单独词组.n-grams…
1.基于知识的表征 如WordNet(图1-1),包含同义词集(synonym sets)和上位词(hypernyms,is a关系). 存在的问题: 作为资源来说是好的,但是它失去了词间的细微差别,比如说"good"和"full"同义是需要在一定的上下文中才能成立的: 易错过词的新义,基本不可能时时保持up-to-date: 是人为分的,所以是主观的结果: 需要花费很多的人力去创建和调整: 很难计算出准确的词间相似度. 2.基于数据库的表征 2.1 词本身 2.1…
在上一篇文章中图像检索(2):均值聚类-构建BoF中,简略的介绍了基于sift特征点的BoW模型的构建,以及基于轻量级开源库vlfeat的一个简单实现. 本文重新梳理了一下BoW模型,并给出不同的实现. 基于OpenCV的BoW实现 BoWTrainer的使用 词袋模型开源库DBoW3 BoW BoW模型最初是为解决文档建模问题而提出的,因为文本本身就是由单词组成的.它忽略文本的词序,语法,句法,仅仅将文本当作一个个词的集合,并且假设每个词彼此都是独立的.这样就可以使用文本中词出现的频率来对文档…
在上一节.我们已经介绍了使用HOG和SVM实现目标检测和识别,这一节我们将介绍使用词袋模型BOW和SVM实现目标检测和识别. 一 词袋介绍 词袋模型(Bag-Of-Word)的概念最初不是针对计算机视觉的,但计算机视觉会使用该概念的升级.词袋最早出现在神经语言程序学(NLP)和信息检索(IR)领域,该模型忽略掉文本的语法和语序,用一组无序的单词来表达一段文字或者一个文档. 我们使用BOW在一系列文档中构建一个字典,然后使用字典中每个单词次数构成向量来表示每一个文档.比如: 文档1:I like…
(1)词集模型(Set Of Words): 单词构成的集合,集合自然每个元素都只有一个,也即词集中的每个单词都只有一个. (2)词袋模型(Bag Of Words): 如果一个单词在文档中出现不止一次,并统计其出现的次数(频数). 为文档生成对应的词集模型和词袋模型 考虑如下的文档: dataset = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to…
using UnityEngine; using System.Collections; using System.Collections.Generic; using UnityEngine.UI; using UnityEditor; /// <summary> /// 游戏控制 /// </summary> public class bowAndArrow : MonoBehaviour { /// <summary> /// Ray /// </summa…
词集模型:单词构成的集合,每个单词只出现一次. 词袋模型:把每一个单词都进行统计,同时计算每个单词出现的次数. 在train_x中,总共有6篇文档,每一行代表一个样本即一篇文档.我们的目标是将train_x转化为可训练矩阵,即生成每个样本的词向量.可以对train_x分别建立词集模型,词袋模型来解决. train_x = [["my", "dog", "has", "flea", "problems", &…
在自然语言处理和文本分析的问题中,词袋(Bag of Words, BOW)和词向量(Word Embedding)是两种最常用的模型.更准确地说,词向量只能表征单个词,如果要表示文本,需要做一些额外的处理.下面就简单聊一下两种模型的应用. 所谓BOW,就是将文本/Query看作是一系列词的集合.由于词很多,所以咱们就用袋子把它们装起来,简称词袋.至于为什么用袋子而不用筐(basket)或者桶(bucket),这咱就不知道了.举个例子: 文本1:苏宁易购/是/国内/著名/的/B2C/电商/之一…
多用于图像检索.分类 3.2.1.4 视觉单词模型 视觉词袋(BoVW,Bag of Visual Words)模型,是“词袋”(BoW,Bag of Words)模型从自然语言处理与分析领域向图像处理与分析领域的一次自然推广.对于任意一幅图像,BoVW模型提取该图像中的基本元素,并统计该图像中这些基本元素出现的频率,用直方图的形式来表示.通常使用“图像局部特征”来类比BoW模型中的单词,如SIFT.SURF.HOG等特征,所以也称视觉词袋模型.图像BoVW模型表示的直观示意图如图所示. 图3-…
项目来源于 <opencv 3计算机视觉 python语言实现> 整个执行过程如下: 1)获取一个训练数据集. 2)创建BOW训练器并获得视觉词汇. 3)采用词汇训练SVM. 4)尝试对测试图像的图像金字塔采用滑动宽口进行检测. 5)对重叠的矩形使用非极大抑制. 6)输出结果. 该项目的结构如下: |-----car_detector|       |--detector.py| |--__init__.py| |--non_maximum.py| |--pyramid.py| |--slid…
原文链接:http://blog.csdn.net/jwh_bupt/article/details/17540561 作者的视野好,赞一个. 哥德尔第一完备性定理,始终是没有能看完完整的证明,艹!看不懂啊! 原文: Bag of words模型(简称BOW)是最常用的特征描述的方法了.在图像分类和检索的相关问题中,能够将一系列数目不定的局部特征聚合为一个固定长度的特征矢量,从而使不同图像之间能够进行直接比较.BOW的改进方法包括一些稀疏的编码方式(如llc),kernel codebooks等…
原文链接:http://blog.csdn.net/jwh_bupt/article/details/27713453 去年年底的时候在一篇博客中,用ANN的框架解释了BOW模型[1],并与LSH[2]等哈希方法做了比较,当时得出了结论,BOW就是一种经过学习的Hash函数.去年再早些时候,又简单介绍过LLC[3]等稀疏的表示模型,当时的相关论文几乎一致地得出结论,这些稀疏表示的方法在图像识别方面的性能一致地好于BOW的效果.后来我就逐渐产生两个疑问: 1)BOW在检索时好于LSH,那么为什么不…
Bag-of-Words (BoW) 模型是NLP和IR领域中的一个基本假设.在这个模型中,一个文档(document)被表示为一组单词(word/term)的无序组合,而忽略了语法或者词序的部分.BOW在传统NLP领域取得了巨大的成功,在计算机视觉领域(Computer Vision)也开始崭露头角,但在实际应用过程中,它却有一些不可避免的缺陷,比如: 稀疏性(Sparseness): 对于大词典,尤其是包括了生僻字的词典,文档稀疏性不可避免: 多义词(Polysem): 一词多义在文档中是常…
一.BoW算法 用OpenCV实现了最简单的BoW算法进行了一次小规模的图像检索任务,使用UKbench数据库,算法原理和网上的描述差不多,使用K-means算法进行聚类,这里使用KDTree算法进行特征量化,按照自己的理解计算了TF-IDF权重,使用余弦距离计算图像之间的相似性.下面给出关键函数依赖于OpenCV的实现: 如TF-IDF权重的计算,这里只是按照自己的理解实现了算法,有的地方传参不是很合适,不过不影响效果: std::vector<double> compute_TF(cv::…
由于在ORB-SLAM2中扩展图像识别模块,因此总结一下BoW算法,并对DBoW2库做简单介绍. 1. BoW算法 BoW算法即Bag of Words模型,是图像检索领域最常用的方法,也是基于内容的图像检索中最基础的算法.网络上有各种各样的原理分析,所以这里只是简单提一下. Bag of Words本是用于文本检索,后被引用与图像检索,和SIFT等出色的局部特征描述符共同使用(所以有时也叫Bag of Feature,BOF),表现出比暴力匹配效率更高的图像检索效果,它是直接使用K-means…
原文地址:https://www.jianshu.com/p/2f2d5d5e03f8 一.文本特征 (一)基本文本特征提取 词语数量 常,负面情绪评论含有的词语数量比正面情绪评论更多. 字符数量 常,负面情绪评论含有的字符数量比正面情绪评论更多. 平均词汇长度 平均词汇长度=所有单词长度/单词个数. 停用词数量 有时,计算停用词的数量可以提供去除停用词后失去的额外信息. 特殊字符数量 如"#"."@"等的数量. 数字的数量 并不常用,但在相似任务中常比较有用. 大…
Bag of Visual Word (BoW, BoF, 词袋) 简介 BoW 是传统的计算机视觉方法,用一些特征(一些向量)来表示一个图像.BoW的核心思想是利用一组较为通用的特征,将图像用这些特征来表示,不同图像对于同一个特征的响应也是不同的,最终一个图像可以转化成关于这一组特征的一个频率直方图(向量).这里有个挺清晰的介绍.BoW 常常用在 content-based image retrieval (CBIR) 任务上. 例如下面这张图(来源 Brown Computer Vision…
当我们尝试使用统计机器学习方法解决文本的有关问题时,第一个需要的解决的问题是,如果在计算机中表示出一个文本样本.一种经典而且被广泛运用的文本表示方法,即向量空间模型(VSM),俗称“词袋模型”. 我们首先看一下向量空间模型如何表示一个文本: 空间向量模型需要一个“字典”:文本的样本集中特征词集合,这个字典可以在样本集中产生,也可以从外部导入,上图中的字典是[baseball, specs, graphics,..., space, quicktime, computer]. 有了字典后便可以表示…
原文地址:https://blog.csdn.net/silence2015/article/details/77374910 本文概述 图像检索是图像研究领域中一个重要的话题,广泛应用于医学,电子商务,搜索,皮革等.本文主要是探讨学习基于局部特征和词袋模型的图像检索设计. 图像检索概述 图像检索按照描述图像不同方式可以分为两类,一类是基于文本的图像检索(Text Based Image Retrieval),另一类是基于内容的图像检索(Content Based Image Retrieval…
https://www.youtube.com/watch?v=jpsd0Aw1qvA 新建骨架,由如下图3部分组成: Bone.000.Top ~ Bone.015.Top (上半部分16节骨骼) Bone.016.Bot ~ Bone.031.Bot (下半部分16节骨骼) Bone (弦上的骨骼) 有了这3部分的骨架绑定到弓箭,作为父级,选择自动权重. 姿态模式下, 移动{Bone}(弦上的骨骼), 弦已经可以动了. 适当调整上面自动生成的顶点组后, 进入骨架编辑模式, 再增加如下图3部分…
本文转载了文章(沈阳的博客),目的在于记录自己重复过程中遇到的问题,和更多的人分享讨论. 程序包:猛戳我 物体分类 物体分类是计算机视觉中一个很有意思的问题,有一些已经归类好的图片作为输入,对一些未知类别的图片进行预测. 下面会说明我使用OpenCV实现的两种方法,第一种方法是经典的bag of words的实现:第二种方法基于第一种方法,但使用的分类方法有所不同. 在此之前,有必要说明一下输入的格式,输入训练数据文件夹,和CalTech 101的组织类似.如下所示,每一类图片都放在一个文件夹里…
本文概述 利用SIFT特征进行简单的花朵识别 SIFT算法的特点有: SIFT特征是图像的局部特征,其对旋转.尺度缩放.亮度变化保持不变性,对视角变化.仿射变换.噪声也保持一定程度的稳定性: SIFT算法提取的图像特征点数不是固定值,维度是统一的128维. 独特性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速.准确的匹配: 多量性,即使少数的几个物体也可以产生大量的SIFT特征向量: 高速性,经优化的SIFT匹配算法甚至可以达到实时的要求: 可扩展性,可以很方…
例句: Jane wants to go to Shenzhen. Bob  wants to go to Shanghai. 一.词袋模型 将所有词语装进一个袋子里,不考虑其词法和语序的问题,即每个词语都是独立的.例如上面2个例句,就可以构成一个词袋,袋子里包括Jane.wants.to.go.Shenzhen.Bob.Shanghai.假设建立一个数组(或词典)用于映射匹配 [Jane, wants, to, go, Shenzhen, Bob, Shanghai] 那么上面两个例句就可以用…
本文转载请注明出处 —— polobymulberry-博客园 0x00 - 前言 mulberryAR是我业余时间弄的一个AR引擎,目前主要支持单目视觉SLAM+3D渲染,并且支持iOS端,但是该引擎也能很方便地移植到Android端.slam模块使用的是ORB-SLAM2,3d渲染模块使用的是VVSION渲染引擎.该引擎目前实现的功能为简单的3D模型摆放,用户可以对3D模型进行平移.旋转和缩放. 先放两张mulberryAR的效果图. 0x01 - 单目视觉SLAM模块 单目视觉SLAM模块…
Accord.NET Framework是在AForge.NET项目的基础上封装和进一步开发而来.因为AForge.NET更注重与一些底层和广度,而Accord.NET Framework更注重与机器学习算法以及提供计算机视频.音频.信号处理以及统计应用相关的解决方案.该项目使用C#语言编写,项目主页:http://accord-framework.net/ 说明:该文章只是一个基本介绍,主要内容是翻译的官方文档和介绍,部分英文表述个人能力有限,不太熟悉,所以直接照搬原文,有比较确切的知道中文名…