SQL优化----百万数据查询优化】的更多相关文章

百万数据查询优化 1.合理使用索引 索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率.现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构.索引的使用要恰到好处,其使用原则如下: ●在经常进行连接,但是没有指定为外键的列上建立索引,而不经常连接的字段则由优化器自动生成索引. ●在频繁进行排序或分组(即进行group by或order by操作)的列上建立索引. ●在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引.比如在雇员表的“性别”列上只有“…
一:理解sql执行顺序 在sql中,第一个被执行的是from语句,每一个步骤都会产生一个虚拟表,该表供下一个步骤查询时调用,比如语句:select top 10 column1,colum2,max(column3) from user where id>1 group by column1,colum2 having count(column1)>1 order by colum2. sqlserver 2005 各个环节简单介绍: ()))<Top Num> <selec…
一:理解sql执行顺序 在sql中,第一个被执行的是from语句,每一个步骤都会产生一个虚拟表,该表供下一个步骤查询时调用,比如语句:select top 10 column1,colum2,max(column3) from user where id>1 group by column1,colum2 having count(column1)>1 order by colum2. sqlserver 2005 各个环节简单介绍: (8)SELECT (9)DISTINCT  (11)&l…
百万数据量SQL,在进行分页查询时会出现性能问题,例如我们使用PageHelper时,由于分页查询时,PageHelper会拦截查询的语句会进行两个步骤 1.添加 select count(*)from (原查询sql) ,用于统计查询的总数 2.拼接 limit startPage,number 用于分页 此时有两个问题 第一个问题是: 用于统计的 select count(*)from (原查询sql)在数据量大时速度慢 第二个问题时: limit startPage,number 在大数据…
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如: selectidfromtwherenumisnull 最好不要给数据库留NULL,尽可能的使用 NOT NULL填充数据库. 备注.描述.评论之类的可以设置为 NULL,其他的,最好不要使用NULL. 不要以为 NULL 不需要空间,比如:char(100) 型,在字段建立…
问题来源: 在查询统计的业务中做了一个小型的每隔一分钟的统计服务,实现1分钟,5分钟,1小时,2小时,一天,三天,一月,3月,一年的级联统计.前期数据来源表数据,以及生成的统计表数据都少; 数月之后,慢慢出现数据库连接的异常,以及做一次的统计可能出现了几分钟方可完成.后期采用主键的先做一次分离,以及分页,也是堪忧 对比分析: 初始数据: 初始表的设计: id的主键自增 查询sql: EXPLAIN SELECT count(id) from t_summary_minute 结果: 184753…
常见的SQL优化 一.查询优化 1.避免全表扫描 模糊查询前后加%也属于全表扫描 在where子句中对字段进行表达式操作会导致引擎放弃使用索引而进行全表扫描,如: select id from t where num/2=100     应改为:     select id from t where num=100*2 2.适当的创建索引,在where及order by涉及的列上建立索引 3.尽量避免在 where 子句中对字段进行 null 值判断.使用!=或<>操作符.使用 or 来连接条…
数据库系统发展历史 数据库系统产生于20世纪60年代中期,至今有近50多年的历史,其发展经历了三代演变,造就了四位图灵奖得主,发展成为一门计算机基础学科,带动了一个巨大的软件产业. 数据库系统是操作系统之上最重要的基础设施之一,被称为软件产业的常青树,特别是它所支撑起来的大数据.人工智能应用,更是发展迅猛. 面对发展快速的数据库领域,以及人类所拥有的数据量爆发式增长,如何对海量数据进行管理.分析.挖掘便变得尤为重要.SQL优化器正是为了解决以上问题而诞生的. 查询优化器简介 SQL优化器,其中最…
< 数据库技术内幕 > 处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描. 2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 3.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:     select id from t where num is null     可以在num…
原文:http://blog.csdn.net/zhengyiluan/article/details/51671599 处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描. 2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 3.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:     se…