数值分析 最小二乘 matlab】的更多相关文章

1. 已知函数在下列各点的值为   -1 -0.75 -0.5 0 0.25 0.5 0.75   1.00 0.8125 0.75 1.00 1.3125 1.75 2.3125 分别用一次.二次.三次最小二乘拟合多项式拟合上述数据,画出所给数据和所求最小二乘拟合多项式的图像. 程序: function f=multifit(x,y,wfunc,n) syms t %x,y为给定数据数组,wfunc为权函数,n为要求拟合多项式的次数 N=length(x); M=length(y); if(N…
1.今天要拷matlab代码了,而且是很恶心的算法,估计也没几个人能看得懂,就连我自己都看不懂. 我也不知道这样做的意义何在,可能只是证明我在这世上曾经学过那么那么难的东西吧 首先是一个matlab版的快速排序,同学们应该都看得懂吧. function f=quicksort(x,left,right) if left<right [i,x]=Division(x,left,right); x=quicksort(x,left,i-1); x=quicksort(x,i+1,right); en…
1.最小二乘原理 Matlab直接实现最小二乘法的示例: close x = 1:1:100; a = -1.5; b = -10; y = a*log(x)+b; yrand = y + 0.5*rand(1,size(y,2)); %%最小二乘拟合 xf=log(x); yf=yrand; xfa = [ones(1,size(xf,2));xf] w = inv(xfa*xfa')*xfa*yf';%直接拟合得到的结果 参考资料: 1.http://blog.csdn.net/lotus_…
1.最小二乘原理 Matlab直接实现最小二乘法的示例: close x = 1:1:100; a = -1.5; b = -10; y = a*log(x)+b; yrand = y + 0.5*rand(1,size(y,2)); %%最小二乘拟合 xf=log(x); yf=yrand; xfa = [ones(1,size(xf,2));xf] w = inv(xfa*xfa')*xfa*yf';%直接拟合得到的结果 参考资料: 1.http://blog.csdn.net/lotus_…
最近在分析一些数据,就是数据拟合的一些事情,用到了matlab的polyfit函数,效果不错. 因此想了解一下这个多项式具体是如何拟合出来的,所以就搜了相关资料. 这个文档介绍的还不错,我估计任何一本数值分析教材上讲的都非常清楚. 推导就不再写了,我主要参考下面两页PPT,公式和例子讲的比较清楚. 公式: 例子: matlab代码如下: clear all; close all; clc; N=10; %设置拟合阶数 x=1:0.5:10; y=cos(x); %生成待拟合点 p=polyfit…
1.误差的来源 模型误差:数学模型与实际问题之间的误差 观测误差:测量数据与实际数据的误差 方法误差:数学模型的精确解与数值方法得到的数值解之间的误差:例如 舍入误差:对数据进行四舍五入后产生的误差 2.减少误差的几种方法          现在,我们一般用计算机解决计算问题,使用最多的是Matlab软件.对实际问题进行数学建模时,可能存在模型误差,对数学模型进行数值求解时,我们使用的方法可能产生方法误差,我们输入计算机的数据一般是有测量误差的,计算机在运算过程的每一步又会产生舍入误差(十进制转…
起本篇题目还是比较纠结的,原因是我本意打算寻找这样一个算法:在测量数据有比较大离群点时如何估计原始模型. 上一篇曲面拟合是假设测量数据基本符合均匀分布,没有特别大的离群点的情况下,我们使用最小二乘得到了不错的拟合结果. 但是当我加入比如10个大的离群点时,该方法得到的模型就很难看了.所以我就在网上搜了一下,有没有能够剔除离群点的方法. 结果找到了如下名词:加权最小二乘.迭代最小二乘.抗差最小二乘.稳健最小二乘. 他们细节的区别我就不过分研究了,不过这些最小二乘似乎表达的是一个意思: 构造权重函数…
灰色预测的主要特点是只需要4个数据,就能解决历史数据少,序列的完整性以及可靠性低的问题,能将无规律的原始数据进行生成得到规律性较强的生成序列,易于检验 但缺点是只适合中短期的预测,且只适合指数级增长的预测. 在建立灰色预测模型之前,需先对原始时间序列进行数据处理,经过数据预处理后的数据序列称为生成列.对原始数据进行预处理,不是寻找它的统计规律和概率分布,而是将杂乱无章的原始数据列通过一定的方法处理,变成有规律的时间序列数据,即以数找数的规律,再建立动态模型. 灰色预测通过鉴别系统因素之间发展趋势…
一.实验目的 掌握最小二乘法拟合离散数据,多项式函数形式拟合曲线以及可以其他可以通过变量变换转化为多项式的拟合曲线目前待实现功能: 1. 最小二乘法的基本实现. 2. 用不同数据量,不同参数,不同的多项式阶数,比较实验效果. 3. 语言python. 二.实验原理 最小二乘法(又称最小平方法)是一种数学优化技术.它通过最小化误差的平方和寻找数据的最佳函数匹配.利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小.最小二乘法还可用于曲线拟合.其他一些优化问题…
Chapter 4 1. 最小二乘和正规方程 1.1 最小二乘的两种视角 从数值计算视角看最小二乘法 我们在学习数值线性代数时,学习了当方程的解存在时,如何找到\(\textbf{A}\bm{x}=\bm{b}\)的解.但是当解不存在的时候该怎么办呢?当方程不一致(无解)时,有可能方程的个数超过未知变量的个数,我们需要找到第二可能好的解,即最小二乘近似.这就是最小二乘法的数值计算视角. 从统计视角看最小二乘法 我们在数值计算中学习过如何找出多项式精确拟合数据点(即插值),但是如果有大量的数据点,…