NumPy学习_02 ndarray基本操作】的更多相关文章

1.算术运算符 它们只用于位置相同的元素之间,即为元素级的运算. 所得到的运算结果组成一个新的数组. 不用编写循环即可对数据执行批量运算.(矢量化) import numpy as np # 创建一个数组a = np.arange(4)print('数组a ', a) # 加上一个标量print('加标量', a + 4) # 乘以一个标量print('乘标量', a * 2) 数组a [0 1 2 3]加标量 [4 5 6 7]乘标量 [0 2 4 6] b = np.arange(4, 8)…
1.使用array()函数创建数组 参数可以为:单层或嵌套列表:嵌套元组或元组列表:元组或列表组成的列表 # 导入numpy库 import numpy as np # 由单层列表创建 a = np.array([1, 2, 3]) print(a) [1 2 3] # 由嵌套列表创建 b = np.array([[1.3, 2.4], [0.3, 4.1]]) print(b) [[1.3 2.4] [0.3 4.1]] # 由嵌套元组创建 c = np.array((("p", &…
1.NumPy库 NumPy = Numerical Python 是高性能科学计算和数据分析的基础库. pandas库充分借鉴了NumPy的相关概念,先行掌握NumPy库的用法,才能把pandas的用处发挥到极致. NumPy库是Numeric和Numarray的一个整合库. NumPy是开源项目,使用BSD许可证. NumPy是大多数Python发行版的基础库,也可自行安装. # NumPy库导入方法import numpy as np 2.ndarray对象 整个NumPy库的基础是nda…
Numpy学习笔记 ndarray多维数组 创建 import numpy as np np.array([1,2,3,4]) np.array([1,2,3,4,],[5,6,7,8]) np.zeros(8) np.zeros(3,4) np.ones(4) np.one_like([1,2,3,4]) np.empty((2,2,2)) np.arange(10) 数组创建函数 arange ones/ones_like zeros/zeros_like empty/empty_like…
pandas and numpy notebook        最近工作交接,整理电脑资料时看到了之前的基于Jupyter学习数据分析相关模块学习笔记.想着拿出来分享一下,可是Jupyter导出来html文件,博客园不支持js注入,贴图效果实在太差劲儿.所以只贴了内容,要是有需要文件原版(pdf.md.html等)可以在评论区说一下.        本系列是数据分析相关的,打算做一个持续连载,后边便于自己系统查看和回顾. 另外,本片博客在github上有PDF版本,并且格式也很清爽,请转htt…
numpy学习 标签(空格分隔): numpy python 数据类型 5种类型:布尔值(bool),整数(int),无符号整数(uint).浮点(float).复数(complex) 支持的原始类型与 C 中的原始类型紧密相关: Numpy 的类型 C 的类型 描述 np.bool bool 存储为字节的布尔值(True或False) np.byte signed char 平台定义 np.ubyte unsigned char 平台定义 np.short short 平台定义 np.usho…
一.NumPy简介 其官网是:http://www.numpy.org/ NumPy是Python语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.Numpy内部解除了CPython的GIL(全局解释器锁),运行效率极好,是大量机器学习框架的基础库! 关于GIL请参考博客:http://www.cnblogs.com/wj-1314/p/9056555.html NumPy的全名为Numeric Python,是一个开源的Python科学计算库,它包…
NumPy学习(一) NumPy数组创建 NumPy数组属性 NumPy数学算术与算数运算 NumPy数组创建 NumPy 中定义的最重要的对象是称为 ndarray 的 N 维数组类型. 它描述相同类型的元素集合. 可以使用基于零的索引访问集合中的项目. ndarray中的每个元素在内存中使用相同大小的块. ndarray中的每个元素是数据类型对象的对象(称为 dtype). 从ndarray对象提取的任何元素(通过切片)由一个数组标量类型的 Python 对象表示. 它从任何暴露数组接口的对…
numpy 学习笔记 导入 numpy 包 import numpy as np 声明 ndarray 的几种方法 方法一,从list中创建 l = [[1,2,3], [4,5,6], [7,8,9]] matrix = np.array(l) print(matrix) [[1 2 3] [4 5 6] [7 8 9]] 方法二,指定维度,不赋值 matrix = np.ndarray(shape=(3,4)) print(matrix) [[9.66308774e-312 2.470328…
numpy 学习总结 作者:csj更新时间:01.09 email:59888745@qq.com 说明:因内容较多,会不断更新 xxx学习总结: 回主目录:2017 年学习记录和总结 #生成数组/使用astype/取值和赋值/ 数学运算 / 内置的创建数组的函数/ 文件输入输出 # Numpy是Python语言的一个library numpy # Numpy主要支持矩阵操作和运算 # Numpy非常高效,core代码由C语言写成 # pandas也是基于Numpy构建的一个library #…
原文:https://www.cnblogs.com/nxld/p/6058572.html https://morvanzhou.github.io/tutorials/data-manipulation/np-pd/2-1-np-attributes/-----Numpy 学习 https://blog.csdn.net/u013457382/article/details/50828646-------python numpy教程 https://www.cnblogs.com/linux…
NumPy学习(1) 参考资料: http://www.cnblogs.com/zhanghaohong/p/4854858.html http://linusp.github.io/2016/02/25/creation-and-io-of-ndarray.html 数组的创建 数组属性 数组元素获取-普通索引.切片.布尔索引.花式索引 统计函数与线性代数运算 随机数的生成 NumPy数组:NumPy数组是一个多维数组对象,称为ndarray. 数组的创建 一维数组的创建[随机.list.tu…
目录 Numpy学习笔记(上篇) 一.Jupyter Notebook的基本使用 二.Jpuyter Notebook的魔法命令 1.%run 2.%timeit & %%timeit 3.%time 4.其他魔法命令 二.Numpy.array基础 三.创建numpy数组与矩阵 四.Numpy.array的基本操作 我是尾巴 Numpy学习笔记(上篇) 一.Jupyter Notebook的基本使用 首先需要安装anaconda,安装完成之后会自带Jupyter Notebook,启动之后会自…
Contents Numpy是一个用python实现的科学计算包,主要提供矩阵运算的功能,而矩阵运算在机器学习领域应用非常广泛,Numpy一般与Scrapy.matplotlib一起使用. Numpy用途 Numpy主要用作高性能计算和数据分析,其操作是围绕ndarray这么一个矩阵元素来进行.在数据分析的应用中,Numpy主要功能体现在:1.用于数据清理和整理.子集构造和过滤.转换等快速的矢量化数组运算2.常用的数组算法.如排序.化.集合运算等3.统计和数据聚合运算4.异构数据的合并/连接/转…
第一章 NumPy快速入门 首先,我们将介绍如何在不同的操作系统中安装NumPy和相关软件,并给出使用NumPy的简单示例代码. 然后,我们将简单介绍IPython(一种交互式shell工具). 如前言所述,SciPy和NumPy有着密切的联系,因此你将多次看到SciPy的身影. 在本章的末尾,我们将告诉你如何利用在线资源,以便你在受困于某个问题或不确定最佳的解题方法时,可以在线获取帮助.   本章涵盖以下内容: 1.在Windows.Linux和Macintosh操作系统上安装Python,S…
今天有空再把numpy看一下,补充点不会的,再去看matplotlib 回顾之前笔记,发现之前的numpy学习Ⅰ中关于numpy的行.列.维可能表述有点不清晰,这里再叙述一下 import numpy as np c = np.array([[[1,2],[1,2]],[[1,2],[0,0]],[[3,4],[5,6]],[[7,8],[9,0]]]) print("c:",c) print("c.ndim:",c.ndim) print("c.shap…
摘自:http://www.cnblogs.com/xray2005/archive/2009/05/17/1458568.html 本节,直接写通过代码来学习.这些基本操作都比较简单,与这些基本操作相关的内容在之前的1至6节基本介绍完毕. l           增加: 方法1:使用AddToXXX(xxx)方法:实例代码如下: using (var edm = new NorthwindEntities()) { Customers c = new Customers { CustomerI…
学习java窗口基本操作时无聊写的 就当记录 代码如下: package day08; import java.awt.BorderLayout;import java.awt.Color;import java.awt.FlowLayout;import java.awt.Font;import java.awt.GridLayout; import javax.swing.JButton;import javax.swing.JFrame;import javax.swing.JLabel;…
NumPy学习笔记 三 股票价格 <NumPy学习笔记>系列将记录学习NumPy过程中的动手笔记,前期的参考书是<Python数据分析基础教程 NumPy学习指南>第二版.<数学分析>第四版(华东师范大学数学系).<概率论与数理统计>(陈希孺,中科大出版).<概率论与数理统计>第二版(茆诗松.程依明等编).<组合最优化:理论与方法>(现代数学译丛23).笔记三主要操作股票价格数据. 股票价格数据通常包括开盘价.最高价.最低价和收盘价.…
NumPy学习笔记 二 <NumPy学习笔记>系列将记录学习NumPy过程中的动手笔记,前期的参考书是<Python数据分析基础教程 NumPy学习指南>第二版.<数学分析>第四版(华东师范大学数学系).<概率论与数理统计>(陈希孺,中科大出版).<概率论与数理统计>第二版(茆诗松.程依明等编).<组合最优化:理论与方法>(现代数学译丛23).笔记二主要记录数据获取,沪深证券市场的A股股票数据. 获取的股票数据周期包括5分钟.15分钟…
NumPy学习笔记 一 <NumPy学习笔记>系列将记录学习NumPy过程中的动手笔记,前期的参考书是<Python数据分析基础教程 NumPy学习指南>第二版.<数学分析>第四版(华东师范大学数学系).<概率论与数理统计>(陈希孺,中科大出版).<概率论与数理统计>第二版(茆诗松.程依明等编).<组合最优化:理论与方法>(现代数学译丛23).笔记一主要记录NumPy&SciPy及相关软件的环境准备部分. NumPy的官方网站…
NumPy学习(索引和切片,合并,分割,copy与deep copy) 目录 索引和切片 合并 分割 copy与deep copy 索引和切片 通过索引和切片可以访问以及修改数组元素的值 一维数组 程序示例 import numpy as np #索引与切片 array=np.arange(3,15) print(array) print(array[3])#数组下标为3的元素 print('\n') print(array[1:3])#取从下标1到下标3,不包括下标3 print(array[…
孤荷凌寒自学python第六十六天学习mongoDB的基本操作并进行简单封装5并学习权限设置 (完整学习过程屏幕记录视频地址在文末) 今天是学习mongoDB数据库的第十二天. 今天继续学习mongoDB的简单操作,并继续对一些可能反复经常使用的操作进行简单的封装.同时通过搜索了解了如何对本地Mongo数据库进行权限设置(没有实践本地数据库的用户权限设置.) 按个人规划,今天是初步了解学习MongoDb数据库的最后一个学习日,后续将在真正使用此数据库时,再对其进行深入研究. 一.今天完成了两个可…
孤荷凌寒自学python第六十五天学习mongoDB的基本操作并进行简单封装4 (完整学习过程屏幕记录视频地址在文末) 今天是学习mongoDB数据库的第十一天. 今天继续学习mongoDB的简单操作,并继续对一些可能反复经常使用的操作进行简单的封装. 今天成功了解并实测完成了向mongoDB数据库中删除记录的操作,详细学习过程见屏幕录屏学习过程. 一.首先解决了昨天没有解决的修改记录的问题 今天花了一定的时间认真看相关资料,发现在修改记录时: [方法一]: 集合对象.update({查询记录的…
孤荷凌寒自学python第六十四天学习mongoDB的基本操作并进行简单封装3 (完整学习过程屏幕记录视频地址在文末) 今天是学习mongoDB数据库的第十天. 今天继续学习mongoDB的简单操作,并继续对一些可能反复经常使用的操作进行简单的封装. 今天成功了解并实测完成了向mongoDB数据库中修改记录的操作,详细学习过程见屏幕录屏学习过程. 测试代码如下: [ceshi.py] from pymongo import MongoClient import datetime import _…
孤荷凌寒自学python第六十三天学习mongoDB的基本操作并进行简单封装2 (完整学习过程屏幕记录视频地址在文末) 今天是学习mongoDB数据库的第九天. 今天继续学习mongoDB的简单操作,并继续对一些可能反复经常使用的操作进行简单的封装. 今天成功了解并实测完成了从mongoDB数据库中筛选出记录的操作,详细学习过程见屏幕录屏学习过程. 测试代码如下: [ceshi.py] ``` from pymongo import MongoClient import datetime imp…
孤荷凌寒自学python第六十二天学习mongoDB的基本操作并进行简单封装1 (完整学习过程屏幕记录视频地址在文末) 今天是学习mongoDB数据库的第八天. 今天开始学习mongoDB的简单操作,并对一些可能反复经常使用的操作进行简单的封装. 今天成功了解并实测完成了向mongoDB数据库中添加记录的操作,详细学习过程见屏幕录屏学习过程. 测试代码如下: [ceshi.py] ``` from pymongo import MongoClient import datetime import…
目录 Numpy学习笔记(下篇) 一.Numpy数组的合并与分割操作 1.合并操作 2.分割操作 二.Numpy中的矩阵运算 1.Universal Function 2.矩阵运算 3.向量和矩阵运算 三.Numpy中的聚合操作 四.Numpy中的arg运算 1.索引操作 2.排序和索引使用 五.Fancy Indexing 六.Numpy.array的比较 我是尾巴 Numpy学习笔记(下篇) 路漫漫其修远兮,吾将上下而求索!Numpy学习笔记(上篇) 一.Numpy数组的合并与分割操作 ​…
Numpy学习之--数组创建 过程展示 import numpy as np a = np.array([2,3,9]) a array([2, 3, 9]) a.dtype dtype('int32') b = np.array([1.2,2.3,3]) b array([1.2, 2.3, 3. ]) b.dtype dtype('float64') 常见的错误是:直接将多个数值当做参数传递,正确的做法是将他们以列表或数组的方式传递 # a = np.array(1,2,3)#错误 b =…
python学习9—文件基本操作与高级操作 1. 文件基本操作 打开文件,获得文件句柄:f = open('filename',encoding='utf-8'),open会查询操作系统的编码方式,并按照该编码方式读取文件,若文件使用utf-8编码,则打开需指定编码 通过句柄对文件操作:data = f.read() 关闭文件:f.close() 2. 文件操作模式 r,只读模式,不可写,f = open('filename','r',encoding='utf-8') f.readable()…