MXNET:卷积神经网络】的更多相关文章

mxnet框架下超全手写字体识别—从数据预处理到网络的训练—模型及日志的保存 import numpy as np import mxnet as mx import logging logging.getLogger().setLevel(logging.DEBUG) batch_size = 100 mnist = mx.test_utils.get_mnist() train_iter = mx.io.NDArrayIter(mnist['train_data'], mnist['trai…
卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现. 其中 文章 详解卷积神经网络(CNN)已经对卷积神经网络进行了详细的描述,这里为了学习MXNet的库,所以对经典的神经网络进行实现~加深学习印象,并且为以后的使用打下基础.其中参考的为Gluon社区提供的学习资料~ 1.简单LeNet的实现 def LeNet(): """ 较早的卷积神经网络 :…
最近试试深度学习能做点什么事情.MXNet是一个与Tensorflow类似的开源深度学习框架,在GPU显存利用率上效率高,比起Tensorflow显著节约显存,并且天生支持分布式深度学习,单机多卡.多机多卡支持丰富,拥有着良好的技术架构.目前是亚马逊AWS的官方深度学习框架.由于其团队以MXNet产品本身为先,所以文档资料较少.现在还稍微多了一点. 1. 搭建Jupyter notebook远程开发环境 Jupyter notebook支持python.R.shell等等,功能非常全面.基于Ju…
1.LeNet模型 LeNet是一个早期用来识别手写数字的卷积神经网络,这个名字来源于LeNet论文的第一作者Yann LeCun.LeNet展示了通过梯度下降训练卷积神经网络可以达到手写数字识别在当时最先进的成果,这个尊基性的工作第一次将卷积神经网络推上舞台 上图就是LeNet模型,下面将对每层参数进行说明 1.1 input输入层 假设输入层数据shape=(32,32) 1.2 C1卷积层 卷积核大小: kernel_size=(5,5) 步幅:stride = 1 输出通道为6 可训练参…
介绍过去几年中数个在 ImageNet 竞赛(一个著名的计算机视觉竞赛)取得优异成绩的深度卷积神经网络. LeNet LeNet 证明了通过梯度下降训练卷积神经网络可以达到手写数字识别的最先进的结果.这个奠基性的工作第一次将卷积神经网络推上舞台,为世人所知. net = nn.Sequential() net.add( nn.Conv2D(channels=6, kernel_size=5, activation='sigmoid'), nn.MaxPool2D(pool_size=2, str…
卷积神经网络(convolutional neural network).它是近年来深度学习能在计算机视觉中取得巨大成果的基石,它也逐渐在被其他诸如自然语言处理.推荐系统和语音识别等领域广泛使用. 目前我关注的问题是: 输入数据的构建,尤其是多输入.多输出的情况. finetune的实现,如何将已训练网络的部分层拿出来作为其他网络的一部分. 二维卷积层 二维卷积: 实现如下: def corr2d(X, K): h, w = K.shape Y = nd.zeros((X.shape[0] -…
3:用tensorflow搭个神经网络出来 为什么用tensorflow呢,应为谷歌是亲爹啊,虽然有些人说caffe更适合图像啊mxnet效率更高等等,但爸爸就是爸爸,Android都能那么火,一个道理嘛.其实这些个框架一通百通,就是语法不一样了些.从tensorflow开始吧. 关于tf的安装详见另一篇博文,此处tensorflow的学习基本来自Udacity中google的深度学习课程. 1:tensorflow的计算图 在tensorflow中编写代码可以分成两个部分,首先是要定义一个计算…
我们知道卷积神经网络(CNN)在图像领域的应用已经非常广泛了,一般一个CNN网络主要包含卷积层,池化层(pooling),全连接层,损失层等.虽然现在已经开源了很多深度学习框架(比如MxNet,Caffe等),训练一个模型变得非常简单,但是你对这些层具体是怎么实现的了解吗?你对softmax,softmax loss,cross entropy了解吗?相信很多人不一定清楚.虽然网上的资料很多,但是质量参差不齐,常常看得眼花缭乱.为了让大家少走弯路,特地整理了下这些知识点的来龙去脉,希望不仅帮助自…
https://www.jianshu.com/p/f9b015cc4514 https://github.com/hpi-xnor/BMXNet  BMXNet:基于MXNet的开源二值神经网络实现 Index Introduction Related Works Binary Neural Networks XNOR-Net Conclusion Introduction 神经网络模型的压缩是一个很有前景的方向.由于神经网络需要较大的计算量,目前来说,我们通常在服务器上对神经网络进行训练或是…
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! TensorFlow 从入门到精通系列教程: http://www.tensorflownews.com/series/tensorflow-tutorial/ 卷积层简单封装 # 池化操作 def conv2d(x, W, b, strides=1): # Conv2D wrapper, with bias and relu activation x = tf.…