垂直切分.水平切分 1.垂直分库,解决库中表太多的问题. 2.垂直分表,解决表中列太多的问题.例如 商品表 包含 产地.二维码 .时间.价格.各个列.分为不同的小表. 水平切分, 大数据表拆分为小表 水平拆分后还是要考虑小标太多 导致库中表太多的问题,要综合考虑是否需要垂直分库. 拆分策略 垂直拆分(er分片) 相关联的表放在一个库 水平拆分 范围拆分      一直性hash  根据某一个属性取模  例如 userId 日期拆分 拆分后带来的问题 1.垮库join的问题 1.设计的时候 考虑应…
读写分离:为了确保数据库产品的稳定性,很多数据库拥有双机热备功能.也就是,第一台数据库服务器,是对外提供增删改业务的生产服务器:第二台数据库服务器,主要进行读的操作. 目前有多种方式实现读写分离,一种是Mycat这种数据库中间件,需要单独部署服务,通过配置来实现读写分离,不侵入到业务代码中:还有一种是dynamic-datasource/shardingsphere-jdbc这种,需要在业务代码引入jar包进行开发. 本框架集成 dynamic-datasource(多数据源+读写分离+分库)+…
书接上文 <一文快速入门分库分表(必修课)>,这篇拖了好长的时间,本来计划在一周前就该写完的,结果家庭内部突然人事调整,领导层进行权利交接,随之宣布我正式当爹,紧接着家庭地位滑落至第三名,还给我分配了一个长期维护任务:带娃.看看我们的靓照,标准的小淑女一枚萌萌哒. 作为Sharding-JDBC 分库分表实战系列的开篇文章,我们在前文中回顾了一下分库分表的基础知识,对分库分表的拆分方式有了一定的了解,下边我们介绍一下 Sharding-JDBC 框架和快速的搭建一个分库分表案例,为讲解后续功能…
今天我们介绍一下 Sharding-JDBC框架和快速的搭建一个分库分表案例,为讲解后续功能点准备好环境. 一.Sharding-JDBC 简介 Sharding-JDBC 最早是当当网内部使用的一款分库分表框架,到2017年的时候才开始对外开源,这几年在大量社区贡献者的不断迭代下,功能也逐渐完善,现已更名为 ShardingSphere,2020年4⽉16⽇正式成为 Apache 软件基⾦会的顶级项⽬. 随着版本的不断更迭 ShardingSphere 的核心功能也变得多元化起来.从最开始 S…
目录 分库分表诞生的前景 分库分表的方式(垂直拆分,水平复制) 1.垂直拆分 1.1 垂直分库 1.2 垂直分表 2.水平拆分 2.1 水平分库 2.2 水平分表 分库分库中间件 ShardingSphere Sharding-JDBC 实现水平分表 实现水平分库 实现垂直分库 实现读写分离 Sharding-Proxy 环境配置 分库分表 读写分离 两者区别 实现原理 Sharding-jdbc 3.0不支持的sql ShardingSphere扩展点 分库分表中间件对比 分布分表应用和问题…
作者:小傅哥 博客:https://bugstack.cn 沉淀.分享.成长,让自己和他人都能有所收获! 一.前言 什么?Java 面试就像造火箭 单纯了! 以前我也一直想 Java 面试就好好面试呗,嘎哈么总考一些工作中也用不到的玩意,会用 Spring.MyBatis.Dubbo.MQ,把业务需求实现了不就行了! 但当工作几年后,需要提升自己(要加钱)的时候,竟然开始觉得自己只是一个调用 API 攒接口的工具人.没有知识宽度,没有技术纵深,也想不出来更没有意识,把日常开发的业务代码中通用的共…
背景 传统的将数据集中存储至单一数据节点的解决方案,在性能.可用性和运维成本这三方面已经难于满足互联网的海量数据场景. 从性能方面来说,由于关系型数据库大多采用 B+ 树类型的索引,在数据量超过阈值的情况下,索引深度的增加也将使得磁盘访问的 IO 次数增加,进而导致查询性能的下降:同时,高并发访问请求也使得集中式数据库成为系统的最大瓶颈. 从可用性的方面来讲,服务化的无状态型,能够达到较小成本的随意扩容,这必然导致系统的最终压力都落在数据库之上.而单一的数据节点,或者简单的主从架构,已经越来越难…
读写分离 何为读写分离? 见名思意,根据读写分离的名字,我们就可以知道:读写分离主要是为了将对数据库的读写操作分散到不同的数据库节点上. 这样的话,就能够小幅提升写性能,大幅提升读性能. 我简单画了一张图来帮助不太清楚读写分离的小伙伴理解. 一般情况下,我们都会选择一主多从,也就是一台主数据库负责写,其他的从数据库负责读. 主库和从库之间会进行数据同步,以保证从库中数据的准确性. 这样的架构实现起来比较简单,并且也符合系统的写少读多的特点. ​ 读写分离会带来什么问题?如何解决? 读写分离对于提…
第1章  引言 随着互联网应用的广泛普及,海量数据的存储和访问成为了系统设计的瓶颈问题.对于一个大型的 互联网应用,每天几十亿的PV无疑对数据库造成了相当高的负载.对于系统的稳定性和扩展性造成了极大的问题.通过数据切分来提高网站性能,横向扩展数据层 已经成为架构研发人员首选的方式.水平切分数据库,可以降低单台机器的负载,同时最大限度的降低了了宕机造成的损失.通过负载均衡策略,有效的降低了单台 机器的访问负载,降低了宕机的可能性:通过集群方案,解决了数据库宕机带来的单点数据库不能访问的问题:通过读…
原文地址:http://www.uml.org.cn/sjjm/201211212.asp数据库分库分表(sharding)系列 目录; (一) 拆分实施策略和示例演示 (二) 全局主键生成策略 (三) 关于使用框架还是自主开发以及sharding实现层面的考量 (四) 多数据源的事务处理 (五) 一种支持自由规划无须数据迁移和修改路由代码的Sharding扩容方案 (一) 拆分实施策略和示例演示 第一部分:实施策略 图1.数据库分库分表(sharding)实施策略图解 1.准备阶段 对数据库进…