t分布及t分布表】的更多相关文章

接下来我们就对除了正态分布以外的常用参数分布族进行参数估计,具体对连续型分布有指数分布.均匀分布,对离散型分布有二项分布.泊松分布几何分布. 今天的主要内容是均匀分布的参数估计,内容比较简单,读者应尝试一边阅读,一边独立推导出本文的结论.由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢! 目录 Part 1:均匀分布的参数估计 Part 2:次序统计量 Part 3:均匀分布次序统计量与$\beta$分布 Part 1:均匀分布的参数估计 一般说来,离散分布似乎比连续…
---恢复内容开始--- 今天学习LDA主题模型,看到Beta分布和Dirichlet分布一脸的茫然,这俩玩意怎么来的,再网上查阅了很多资料,当做读书笔记记下来: 先来几个名词: 共轭先验: 在贝叶斯统计理论中,如果某个随机变量Θ的后验概率 p(θ|x)和他的先验概率p(θ)属于同一个分布簇的,那么称p(θ|x)和p(θ)为共轭分布,同时,也称p(θ)为似然函数p(x|θ)的共轭先验.简言之,共轭就是我俩天生一对.我们后面会看到,多项分布的先验概率分布和其后验概率分布就是共轭的. ok,下面我们…
1. 二项分布与beta分布对应 2. 多项分布与狄利克雷分布对应 3. 二项分布是什么?n次bernuli试验服从 二项分布 二项分布是N次重复bernuli试验结果的分布. bernuli实验是什么?做一次抛硬币实验,该试验结果只有2种情况,x= 1, 表示正面. x=0,表示反面. bernuli(x|p) = p^x*(1-p)^(1-x).如果了n次, 我们只要数一下正面的次数n_x,即可得到反面的次数n-n_x. n次重复的nernuli试验: n-bernuli(n_x|N,p)…
1. Gamma函数 首先我们可以看一下Gamma函数的定义: Gamma的重要性质包括下面几条: 1. 递推公式: 2. 对于正整数n, 有 因此可以说Gamma函数是阶乘的推广. 3.  4.  关于递推公式,可以用分部积分完成证明: 2. Beta函数 B函数,又称为Beta函数或者第一类欧拉积分,是一个特殊的函数,定义如下: B函数具有如下性质: 3. Beta分布 在介绍贝塔分布(Beta distribution)之前,需要先明确一下先验概率.后验概率.似然函数以及共轭分布的概念.…
今天的主角是指数分布,由此导出\(\Gamma\)分布,同样,读者应尝试一边阅读,一边独立推导出本文的结论.由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢! 目录 Part 1:指数分布的参数估计 Part 2:独立同分布指数分布之和与$\Gamma$分布 Part 3:$\Gamma$分布与其他分布 Part 1:指数分布的参数估计 指数分布是单参数分布族,总体\(X\sim E(\lambda)\)有时也记作\(\mathrm{Exp}(\lambda)\),此…
在之前的十篇文章中,我们用了九篇文章的篇幅讨论了点估计的相关知识,现在来稍作回顾. 首先,我们讨论了正态分布两个参数--均值.方差的点估计,给出了它们的分布信息,并指出它们是相互独立的:然后,我们讨论到其他的分布族,介绍了点估计的评判标准--无偏性.相合性.有效性:之后,我们基于无偏性和相合性的讨论给出了常用分布的参数点估计,并介绍了两种常用于寻找点估计量的方法--矩法与极大似然法:最后,我们对点估计的有效性进行了讨论,给出了一些验证.寻找UMVUE的方法,并介绍了CR不等式,给出了无偏估计效率…
T分布:温良宽厚 本文由“医学统计分析精粹”小编“Hiu”原创完成,文章采用知识共享Attribution-NonCommercial-NoDerivatives 4.0国际许可协议(http://creativecommons.org/licenses/by-nc-nd/4.0/)进行许可,转载署名需附带本号二维码,不可用于商业用途,不允许任何修改,任何谬误建议,请直接反馈给原作者,谢谢合作! 命名与源起 “t”,是伟大的Fisher为之取的名字.Fisher最早将这一分布命名为“Studen…
在<Gamma函数是如何被发现的?>里证明了\begin{align*} B(m, n) = \int_0^1 x^{m-1} (1-x)^{n-1} \text{d} x = \frac{\Gamma (m) \Gamma (n)}{\Gamma (m+n)} \end{align*}于是令\begin{align*} f_{m,n}(x) = \begin{cases} \frac{x^{m-1} (1-x)^{n-1}}{B(m, n)} = \frac{\Gamma (m+n)}{\G…
正态分布是如何被高斯推导出来的, 我感觉高斯更像是猜出了正态分布. 详见这篇文章:<正态分布的前世今生> http://songshuhui.NET/archives/76501 说一说理解高斯推导过程中的难点: 1. log函数的出现:log函数的出现能把连乘化为求和方便计算,而且log是一对一的函数,不会损失信息量(推导中的log即 ln). 2. 为了求极大似然, 高斯其实做了一个逆向的假设L(θ;x1,x2,x3....xn)在 θ = 所有x的算数平均 处取到最大值,则此时其导数必定…
Z就是正态分布,X^2分布是一个正态分布的平方,t分布是一个正态分布除以(一个X^2分布除以它的自由度然后开根号),F分布是两个卡方分布分布除以他们各自的自由度再相除 比如X是一个Z分布,Y(n)=X1^2+X2^2+……+Xn^2,这里每个Xn都是一个Z分布,t(n)=X/根号(Y/n),F(m,n)=(Y1/m)/(Y2/N) 各个分布的应用如下:方差已知情况下求均值是Z检验.方差未知求均值是t检验(样本标准差s代替总体标准差R,由样本平均数推断总体平均数)均值方差都未知求方差是X^2检验两…