from:https://zhuanlan.zhihu.com/p/44163528 哪些问题? 梯度消失会导致我们的神经网络中前面层的网络权重无法得到更新,也就停止了学习. 梯度爆炸会使得学习不稳定, 参数变化太大导致无法获取最优参数. 在深度多层感知机网络中,梯度爆炸会导致网络不稳定,最好的结果是无法从训练数据中学习,最坏的结果是由于权重值为NaN而无法更新权重. 在循环神经网络(RNN)中,梯度爆炸会导致网络不稳定,使得网络无法从训练数据中得到很好的学习,最好的结果是网络不能在长输入数据序…
转载自: https://blog.csdn.net/qq_25737169/article/details/78847691 前言 本文主要深入介绍深度学习中的梯度消失和梯度爆炸的问题以及解决方案.本文分为三部分,第一部分主要直观的介绍深度学习中为什么使用梯度更新,第二部分主要介绍深度学习中梯度消失及爆炸的原因,第三部分对提出梯度消失及爆炸的解决方案.有基础的同鞋可以跳着阅读. 其中,梯度消失爆炸的解决方案主要包括以下几个部分. - 预训练加微调 - 梯度剪切.权重正则(针对梯度爆炸) - 使…
RNN梯度消失和爆炸的原因 经典的RNN结构如下图所示: 假设我们的时间序列只有三段,  为给定值,神经元没有激活函数,则RNN最简单的前向传播过程如下: 假设在t=3时刻,损失函数为  . 则对于一次训练任务的损失函数为  ,即每一时刻损失值的累加. 使用随机梯度下降法训练RNN其实就是对  .  .  以及  求偏导,并不断调整它们以使L尽可能达到最小的过程. 现在假设我们我们的时间序列只有三段,t1,t2,t3. 我们只对t3时刻的  求偏导(其他时刻类似): 可以看出对于  求偏导并没有…
PHP函数篇详解十进制.二进制.八进制和十六进制转换函数说明 作者: 字体:[增加 减小] 类型:转载   中文字符编码研究系列第一期,PHP函数篇详解十进制.二进制.八进制和十六进制互相转换函数说明,主要掌握各进制转换的方法,以应用于实际开发     一,十进制(decimal system)转换函数说明 1,十进制转二进制 decbin() 函数,如下实例 echo decbin(12); //输出 1100 echo decbin(26); //输出 11010 decbin (PHP 3…
原文:走向DBA[MSSQL篇] 详解游标 前篇回顾:上一篇虫子介绍了一些不常用的数据过滤方式,本篇详细介绍下游标. 概念 简单点说游标的作用就是存储一个结果集,并根据语法将这个结果集的数据逐条处理. 观点 正因为游标可以将结果集一条条取出处理,所以会增加服务器的负担.再者使用游标的效率远远没有使用默认的结果集效率高,在默认结果集中,从客户端发送到服务器的唯一一个数据包是包含需执行语句的数据包.而在使用服务器游标时,每一个FETCH语句都必须从客户端发送到服务器,然后在服务器中将它解析并编译为执…
Scala进阶之路-Scala函数篇详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.传值调用和传名调用 /* @author :yinzhengjie Blog:http://www.cnblogs.com/yinzhengjie/tag/Scala%E8%BF%9B%E9%98%B6%E4%B9%8B%E8%B7%AF/ EMAIL:y1053419035@qq.com */ package cn.org.yinzhengjie.basicGrammar objec…
循环神经网络进阶 BPTT 反向传播过程中,训练模型通常需要模型参数的梯度. \[ \frac{\partial L}{\partial \boldsymbol{W}_{qh}} = \sum_{t=1}^T \text{prod}\left(\frac{\partial L}{\partial \boldsymbol{o}_t}, \frac{\partial \boldsymbol{o}_t}{\partial \boldsymbol{W}_{qh}}\right) = \sum_{t=1}…
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.10 梯度消失和梯度爆炸 当训练神经网络,尤其是深度神经网络时,经常会出现的问题是梯度消失或者梯度爆炸,也就是说当你训练深度网络时,导数或坡度有时会变得非常大,或非常小,甚至以指数方式变小.这加大了训练的难度. 假设你正在训练一个很深的神经网络,并且将其权重命名为"W[1],W[2],W[3],W[4]......W[L]" 为了简化说明,我们选择激活函数为g(z)=z(线性激活函数),b[l]=0(即忽略偏置对神经网络的影响…
2018-12-06 16:25:08 首先我们先来看一下求解梯度的公式,以下面三层的网络为例: 如果w初始化为大于1的数字,在深层神经网络计算梯度的时候就会出现梯度爆炸的现象: 如果w初始化为小于1的数字,在深层神经网络计算梯度的时候就会出现梯度消失的现象: 那么该如何初始化权重值呢? z = w1 * x1 + w2 * x2 + ... + wn * xn 我们希望的是当n很大的时候,z的值不要过大. 其中一个方法就是通过修改方差的方法来完成这个操作,假设我们最初初始化的数值是N(0, 1…
老刘是一名即将找工作的研二学生,写博客一方面是总结大数据开发的知识点,一方面是希望能够帮助伙伴让自学从此不求人.由于老刘是自学大数据开发,博客中肯定会存在一些不足,还希望大家能够批评指正,让我们一起进步! 背景 大数据领域数据源有业务库的数据,也有移动端埋点数据.服务器端产生的日志数据.我们在对数据进行采集时根据下游对数据的要求不同,我们可以使用不同的采集工具来进行.今天老刘给大家讲的是同步mysql增量数据的工具Canal,本篇文章的大纲如下: Canal 的概念 mysql 中主备复制实现原…