MySql in子句 效率低下优化】的更多相关文章

MySql in子句 效率低下优化 背景: 更新一张表中的某些记录值,更新条件来自另一张含有200多万记录的表,效率极其低下,耗时高达几分钟. where resid in ( ); 耗时 365s 优化后 where resid in ( select resourceid from ( ) as tmp ); 耗时 1.41s 总结:对于where xxx in 子句效率极其低下问题,经过in的子句外包装一层select xxx from( ... )as tmp 后,极大优化效率.…
MySql in子句 效率低下优化 背景: 更新一张表中的某些记录值,更新条件来自另一张含有200多万记录的表,效率极其低下,耗时高达几分钟. update clear_res set candelete=0 where resid in ( select distinct resourceid from att_attentionresult where important=0 ); 耗时 365s 优化后 update clear_res set candelete=0 where resi…
一.数据库的优化 1.优化索引.SQL 语句.分析慢查询: 2.设计表的时候严格根据数据库的设计范式来设计数据库: 3.使用缓存,把经常访问到的数据而且不需要经常变化的数据放在缓存中,能节约磁盘IO: 4.优化硬件:采用SSD,使用磁盘队列技术(RAID0,RAID1,RDID5)等: 5.采用MySQL 内部自带的表分区技术,把数据分层不同的文件,能够提高磁盘的读取效率: 6.垂直分表:把一些不经常读的数据放在一张表里,节约磁盘I/O: 7.主从分离读写:采用主从复制把数据库的读操作和写入操作…
mysql in 子查询 效率慢 优化(转) 现在的CMS系统.博客系统.BBS等都喜欢使用标签tag作交叉链接,因此我也尝鲜用了下.但用了后发现我想查询某个tag的文章列表时速度很慢,达到5秒之久!百思不解(后来终于解决),我的表结构是下面这样的,文章只有690篇. 文章表article(id,title,content)标签表tag(tid,tag_name)标签文章中间表article_tag(id,tag_id,article_id)其中有个标签的tid是135,我帮查询标签tid是13…
查询性能优化 1. 为什么查询速度会慢? 1). 如果把查询看作是一个任务,那么它由一系列子任务组成,每个子任务都会消耗一定的时间.如果要优化查询,实际上要优化其子任务,要么消除其中一些子任务,要么减少子任务的执行次数,要么让子任务运行的更快. 2). 通常来说,查询的生命周期大致可以按照顺序来看:从客户端,到服务器端,然后在服务器上进行解析,生成执行计划,执行,并返回结果给客户端.其中"执行"可以认为是整个生命周期中最重要的阶段,这其中包括 大量为了检索数据到存储引擎的调用以及调用后…
本篇深入了解查询优化和服务器的内部机制,了解MySql如何执行特定查询,从中也可以知道如何更改查询执行计划,当我们深入理解MySql如何真正地执行查询,明白高效和低效的真正含义,在实际应用中就能扬长避短. 声明:本人使用的数据库版本为MySql 5.1 一.基本原则:优化数据访问 查询性能低下的最基本原因就是访问了太多数据,一些查询要不可避免地筛选大量的数据,大部分性能欠佳的查询都可以用减少数据访问的方式进行优化. 1.首先分析应用程序是否正在获取超过需要的数据,这通常表现在获取了过多的行或列.…
选择优化的数据类型 MySQL支持的数据类型非常多,选择正确的数据类型对于获得高性能至关重要.不管存储哪种类型的数据,下面几个简单的原则都有助于做出更好的选择: 更小的通常更好一般情况下,应该尽量使用可以正确存储数据的最小数据类型.更小的数据类型通常更快.因为它们占用更少的磁盘.内存和CPU缓存,并且处理时需要的CPU周期也更少.但是要确保没有低估需要存储的值的范围,因为在schema中的增加数据类型的范围是一个非常耗时和痛苦的操作.如果无法确定哪个数据类型是最好的,就选择不会超过范围的最小类型…
上节谈了关于mysql锁定机制的优化方案,下面来谈一下Query优化——Mysql Query Optimizer 当Mysql Query Optimizer接受到从Query Parser过来的Query时会根据相应语法进行分解分析,同时还会做很多其他的计算转化工作如常量转化,无效内容删除.常量计算等.所有这些工作都是为了Optimizer分析出最优的数据检索方式---执行计划. Mysql Query Optimizer所有工作建立在Query Tree的基础上,QueryTree是通过优…
之前上次在部门的分享会上,听了关于MySQL大数据的分页,即怎样使用limit offset,N来进行大数据的分页,现在做一个记录: 首先我们知道,limit offset,N的时候,MySQL的查询效率特别的低,注意是在limit大数据量的时候,测试的表的数据量是1KW条,limit 5000000,N的时候,速度变的非常的慢,当然了offset特别小的时候,查询的速度没有什么差别.那我们来想一下什么没原因造成的? 那其实原因就是MySQL并不是跳过offset行,然后单取N行,而是取offs…
对于一些数据量较大的系统,数据库面临的问题除了查询效率低下,还有就是数据入库时间长.特别像报表系统,每天花费在数据导入上的时间可能会长达几个小时或十几个小时之久.因此,优化数据库插入性能是很有意义的.经过对MySQL innodb的一些性能测试,发现一些可以提高insert效率的方法,供大家参考参考. 1. 一条SQL语句插入多条数据.常用的插入语句如:   1 2 3 4 INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `ty…