DeepLearning.ai学习笔记汇总】的更多相关文章

第一章 神经网络与深度学习(Neural Network & Deeplearning) DeepLearning.ai学习笔记(一)神经网络和深度学习--Week3浅层神经网络 DeepLearning.ai学习笔记(一)神经网络和深度学习--Week4深层神经网络 第二章 改善深层神经网络 DeepLearning.ai学习笔记(二)改善深层神经网络:超参数调试.正则化以及优化--Week1深度学习的实用层面 DeepLearning.ai学习笔记(二)改善深层神经网络:超参数调试.正则化以…
一.进行误差分析 很多时候我们发现训练出来的模型有误差后,就会一股脑的想着法子去减少误差.想法固然好,但是有点headlong~ 这节视频中吴大大介绍了一个比较科学的方法,具体的看下面的例子 还是以猫分类器为例,假设我们的模型表现的还不错,但是依旧存在误差,预测后错误标记的数据中有一部分狗图片被错误的标记成了猫.这个时候按照一般的思路可能是想通过训练出狗分类器模型来提高猫分类器,或者其他的办法,反正就是要让分类器更好地区分狗和猫. 但是现在的问题是,假如错误分类的100个样本中,只有5个狗样本被…
从接触机器学习就了解到Andrew Ng的机器学习课程,后来发现又出来深度学习课程,就开始在网易云课堂上学习deeplearning.ai的课程,Andrew 的课真是的把深入浅出.当然学习这些课程还是要有一些基础的.线性代数,高等数学的一些知识. Andrew NG: Deep Learning.ai 网易云课堂(中文字幕) 推荐理由: Andrew Ng老师是讲课的能手,很多人认识他是从Stanford的经典<机器学习>课程上.Andrew老师授课思路清晰,简洁明了. 这是一份优美的信息图…
介绍 DeepLearning课程总共五大章节,该系列笔记将按照课程安排进行记录. 另外第一章的前两周的课程在之前的Andrew Ng机器学习课程笔记(博客园)&Andrew Ng机器学习课程笔记(CSDN)系列笔记中都有提到,所以这里不再赘述. 1.神经网络概要 注意:这一系列的课程中用中括号表示层数,例如\(a^{[1]}\)表示第二层(隐藏层)的数据. 2.神经网络表示 这个图的内容有点多,跟着下面的步骤来理解这个图吧: 首先看蓝色字体,这个2层的神经网络(输入层一般理解成第0层)有输入层…
1. Mini-batch梯度下降法 介绍 假设我们的数据量非常多,达到了500万以上,那么此时如果按照传统的梯度下降算法,那么训练模型所花费的时间将非常巨大,所以我们对数据做如下处理: 如图所示,我们以1000为单位,将数据进行划分,令\(x^{\{1\}}=\{x^{(1)},x^{(2)}--x^{(1000)}\}\), 一般地用\(x^{\{t\}},y^{\{t\}}\)来表示划分后的mini-batch. 注意区分该系列教学视频的符号标记: 小括号() 表示具体的某一个元素,指一个…
一.什么是人脸识别 老实说这一节中的人脸识别技术的演示的确很牛bi,但是演技好尴尬,233333 啥是人脸识别就不用介绍了,下面笔记会介绍如何实现人脸识别. 二.One-shot(一次)学习 假设我们发财了,开了一家公司.然后作为老板的我们希望与时俱进,所以想使用人脸识别技术来实现打卡. 假如我们公司只有4个员工,按照之前的思路我们训练的神经网络模型应该如下: 如图示,输入一张图像,经过CNN,最后再通过Softmax输出5个可能值的大小(4个员工中的一个,或者都不是,所以一一共5种可能性).…
一.为什么选择序列模型 序列模型可以用于很多领域,如语音识别,撰写文章等等.总之很多优点... 二.数学符号 为了后面方便说明,先将会用到的数学符号进行介绍. 以下图为例,假如我们需要定位一句话中人名出现的位置. 红色框中的为输入.输出值.可以看到人名输出用1表示,反之用0表示: 绿色框中的\(x^{<t>},y^{<t>}\)表示对应红色框中的输入输出值的数学表示,注意从1开始. 灰色框中的\(T_x,T_y\)分别表示输入输出序列的长度,在该例中,\(T_x=9,T_y=9\)…
一.基础模型 假设要翻译下面这句话: "简将要在9月访问中国" 正确的翻译结果应该是: "Jane is visiting China in September" 在这个例子中输入数据是10个中文汉字,输出为6个英文单词,\(T_x\)和\(T_y\)数量不一致,这就需要用到序列到序列的RNN模型. ​ 类似的例子还有看图说话: 只需要将encoder部分用一个CNN模型替换就可以了,比如AlexNet,就可以得到"一只(可爱的)猫躺在楼梯上"…
一.计算机视觉 如图示,之前课程中介绍的都是64* 64 3的图像,而一旦图像质量增加,例如变成1000 1000 * 3的时候那么此时的神经网络的计算量会巨大,显然这不现实.所以需要引入其他的方法来解决这个问题. 二.边缘检测示例 边缘检测可以是垂直边缘检测,也可以是水平边缘检测,如上图所示. 至于算法如何实现,下面举一个比较直观的例子: 可以很明显的看出原来6 * 6的矩阵有明显的垂直边缘,通过3 * 3的过滤器(也叫做 "核")卷积之后,仍然保留了原来的垂直边缘特征,虽然这个边缘…
一.为什么是ML策略 如上图示,假如我们在构建一个喵咪分类器,数据集就是上面几个图,训练之后准确率达到90%.虽然看起来挺高的,但是这显然并不具一般性,因为数据集太少了.那么此时可以想到的ML策略有哪些呢?总结如下: 收集更多的数据 收集更多不同的训练集 结合梯度下降训练算法更长时间 尝试Adam算法 尝试更大的网路 尝试小一点的网络 试着用一下dropout算法 加上\(L_2\)正则项 改善网络结构,如 激活函数 隐藏层节点数量 and so on 二.正交化 正交这个词很好理解,即各个变量…
一.为什么要进行实例探究? 通过他人的实例可以更好的理解如何构建卷积神经网络,本周课程主要会介绍如下网络 LeNet-5 AlexNet VGG ResNet (有152层) Inception 二.经典网络 1.LeNet-5 该网络主要针对灰度图像训练的,用于识别手写数字. 该网络是在1980s提出的,当时很少用到Padding,所以可以看到随着网络层次增加,图像的高度和宽度都是逐渐减小的,深度则不断增加. 另外当时人们会更倾向于使用Average Pooling,但是现在则更推荐使用Max…
一.词汇表征 首先回顾一下之前介绍的单词表示方法,即one hot表示法. 如下图示,"Man"这个单词可以用 \(O_{5391}\) 表示,其中O表示One_hot.其他单词同理. 但是这样的表示方法有一个缺点,看是看下图中右侧给出的例子,比如给出这么一句不完整的话: **I want a glass of orange ___** 假设通过LSTM算法学到了空白处应该填"juice".但是如果将orange改成apple,即 **I want a glass…
一.深层神经网络 深层神经网络的符号与浅层的不同,记录如下: 用\(L\)表示层数,该神经网络\(L=4\) \(n^{[l]}\)表示第\(l\)层的神经元的数量,例如\(n^{[1]}=n^{[2]}=5,n^{[3]}=3,n^{[4]}=1\) \(a^{[l]}\)表示第\(l\)层中的激活函数,\(a^{[l]}=g^{[l]}(z^{[l]})\) 二.前向和反向传播 1. 第\(l\)层的前向传播 输入为 \(a^{[l-1]}\) 输出为 \(a^{[l]}\), cache(…
一.目标定位 这一小节视频主要介绍了我们在实现目标定位时标签该如何定义. 上图左下角给出了损失函数的计算公式(这里使用的是平方差) 如图示,加入我们需要定位出图像中是否有pedestrian,car,motorcycles.注意在这里我们假设图像中只肯呢个存在这三者中的一种或者都不存在,所以共有四种可能. \(P_c=1\)表示有三者中的一种 \(C_1=1\)表示有pedestrian,反之没有 \(C_2=1\)表示有car \(C_3=1\)表示有motorcycles \(b_*\)用于…
NGUI学习笔记汇总,适用于NGUI2.x,NGUI3.x 一.NGUI的直接用法 1. Attach a Collider:表示为NGUI的某些物体添加碰撞器,如果界面是用NGUI做的,只能这样添加.(注:用Component添加无效). 2. Attach an Anchor:表示为该物体添加了UIAnchor脚本,作用是避免像素偏移的问题 3. Attach UIStretch:表示为该物体添加了UIStretch脚本,提供缩放功能 4. Make Pixel Perfect:表示自动为你…
AI学习笔记   第一个黑箭头是用于挑选物体和移 动物体.在绘图是选中一个物体,就可以将它自由的移动.和其他的绘图软件相同当你选 中物体的时候物体周围就会出现八个方形的控制点,你可以通过这些控制点对物体进行变形.   而第二个白箭头是用于挑选和移动节点,这和CorelDRAW等绘图软件中的节点工具类 似,可以移动节点和对节点的两个控制点进行控制,从而达到控制线段形状的目的.   仔细察第二个箭头我们会发现在它的有下角有一个向右的小箭头,按住这个按键几秒钟就会 弹出一个隐藏的工具——组选工具 ,它…
当前标签: ASP.NET Core快速入门 共2页: 上一页 1 2  任务27:Middleware管道介绍 GASA 2019-02-12 20:07 阅读:15 评论:0 任务26:dotnet watch run 和attach到进程调试 GASA 2019-02-11 22:28 阅读:17 评论:0 任务25:IHostEnvironment和 IApplicationLifetime介绍 GASA 2019-02-11 22:25 阅读:9 评论:0 任务24:WebHost的配…
一.概述 Andrew Ng:Coming up with features is difficult, time-consuming, requires expert knowledge. "Applied machine learning" is basically feature engineering( 吴恩达, 人工智能和机器学习领域国际最权威学者之一:提取特征是困难的,耗时的,需要丰富的专家知识."应用机器学习"从根本上来说就是特征工程) 业界广泛流传:…
神经网络和深度学习这一块内容与机器学习课程里Week4+5内容差不多. 这篇笔记记录了Week4+5中没有的内容. 参考笔记:深度学习笔记 神经网络和深度学习 结构化数据:如数据库里的数据 非结构化数据:hard to understand:如图像.文本 一. 深度学习的优势 算法.硬件计算能力的提高使神经网络运行速度变快 大数据(带labels的)使得神经网络精确度更高 在数据集不多的时候深度学习的优势并不是很明显,但是在大数据的情况下,辅助以好的算法和强计算能力,会使神经网络的运行速度和精确…
一.人工智能基本概念 1.1 基本概念 数据分析:对历史规律的展现.对未来数据的预测. 机器学习:机器学习是指从一系列的原始数据中找到规律,提取人们可以识别的特征,然后通过学习这些特征,最终产生一个模型. 流程:原始数据-->特征提取-->模型.机器学习偏向于算法. 人工智能:Artificial Intelligence, AI,亦称机器智能,是指利用计算机来对人的意识.思维信息过程.智能行为进行模拟(如学习. 推理. 思考. 规划等)和延伸,使计算机能实现更高层次的应用.人工智能基于机器学…
学习笔记 关于Jquery的merge方法 话不多说,先上图 使用jquery时,其智能提示如上,大概意思就是合并first和second两个数组,得到的结果是first+(second去重后的结果)的并集 接下来,做出测试: $(function () { var arr1 = ['apple', 'orange',1, 'cherry', 'orange']; var arr2 = ['chen', 343, true, 'cherry',1]; var result = $.merge(a…
一.RNN基本结构 普通神经网络不能处理时间序列的信息,只能割裂的单个处理,同时普通神经网络如果用来处理文本信息的话,参数数目将是非常庞大,因为如果采用one-hot表示词的话,维度非常大. RNN可以解决这两个问题: 1)RNN属于循环神经网络,当从左到右读取文本信息的时候,上一时刻的状态输出可以传递到下一时刻,例如上图的a表示状态,a(1)向下传递,这样就考虑了前面的信息,如果是双向RNN的话,上下文都考虑进去了. 2)RNN参数是共享的.为方便理解,上述图示是展开的RNN结构,其实RNN只…
1.shell脚本中函数使用 函数定义在前,调用在后,顺序反了就没有效果了.函数调用为:函数名 参数列表 函数内部通过以下变量访问函数的参数:shell脚本函数中: $0: 这个脚本的名字 $n: 这个脚本传入的参数值,n取1..9 $*: 这个脚本所有参数 $#: 这个脚本参数个数 $$: 这个脚本运行时的PID $!: 执行上一个背景指令的PID $?: 执行上一个指令的返回值 举例说:脚本名称叫test.sh 入参三个: 1 2 3运行test.sh 1 2 3后 $*为"1 2 3&qu…
目录 一. 正交化 二. 指标 1. 单一数字评估指标 2. 优化指标.满足指标 三. 训练集.验证集.测试集 1. 数据集划分 2. 验证集.测试集分布 3. 验证集.测试集大小 四. 比较人类表现水平 1. 贝叶斯最佳误差 2. 改进方向 全部来自同一分布 当训练集来自不同分布 五. 误差分析 错误标签 六. 快速搭建系统并迭代 七. 迁移学习 八. 多任务学习 九. 端到端的学习 参考笔记:深度学习笔记 一. 正交化 正交化就是将深度学习的整个过程的所有需要解决的问题独立开来.针对于某个方…
博客整理 Mybatis学习笔记(一)--对原生jdbc中问题的总结 Mybatis学习笔记(二)--Mybatis框架 Mybatis学习笔记(三)--入门程序 MyBatis学习笔记(四)--入门程序(续) Mybatis学习笔记(五)--DAO开发 Mybatis学习笔记(六)--配置文件 Mybatis学习笔记(七)--输入输出映射 Mybatis学习笔记(八)--动态SQL Mybatis学习笔记(九)--一对一和一对多查询 Mybatis学习笔记(十)--多对多查询 Mybatis学…
目录 前言 第一周(深度学习引言) 第二周(神经网络的编程基础) 第三周(浅层神经网络) 第四周(深层神经网络) 前言 目标: 掌握神经网络的基本概念, 学习如何建立神经网络(包含一个深度神经网络),以及如何在数据上面训练他们,最后将用一个深度神经网络进行辨认猫. (1)了解深度学习的概念 (2)了解神经网络的结构,使用算法并高效地实现 (3)结合神经网络的算法实现框架,编写实现一个隐藏层神经网络 (4)建立一个深层的神经网络(一般把层数大于等于3的神经网络称为深层神经网络) 第一周(深度学习引…
人人都是产品经理,继续设计课程啦啦啦啦 ADOBE: ps, ai, fl, dw, fw, ae, pr, id   COREL: painter coreldraw   autodesk: 三维: max maya cad   ILLUSTRATOR: 第一天.   位图:由像素构成的图像. 像素块. 失真 矢量图:由数学函数方式计算得来的图像. 贝赛尔曲线:锚点,路径. 不失真   每一个物件都有两种属性: 1, 内部填充 (1,实色, 2,渐变, 3,无)   2, 外部描边     恢…
目录 一. 改善过拟合问题 Bias/Variance 正则化Regularization 1. L2 regularization 2. Dropout正则化 其他方法 1. 数据变形 2. Early stopping 二. 特征缩放 1. 归一化 2. 标准化 三. 初始化参数 梯度消失.梯度爆炸 四. 梯度检验 在神经网络实施梯度检验的实用技巧和注意事项 五. 优化算法 1. mini-Batch梯度下降法 2. 动量梯度下降法 指数加权平均 指数平均加权的偏差修正 动量梯度下降法公式…
笔记几乎涵盖了日常开发中全部的知识点以及相关注意事项 想要学习网页制作的初学者可以通过本篇笔记初步掌握HTML的使用,也可以将该笔记作为查阅资料查看 HTML简单结构 <html> <head> <title>首页</title> </head> <body> 网页正文... </body> </html> html标记:告诉浏览器用什么代码编译 head标记:告诉浏览器汉字用什么字符集显示 body标记:只有…
目录 第一周 循环序列模型 第二周 自然语言处理与词嵌入 第三周 序列模型和注意力机制 第一周 循环序列模型 在进行语音识别时,给定一个输入音频片段X,并要求输出对应的文字记录Y,这个例子中输入和输出数据就是序列模型. 音乐生产问题也是使用序列数据的一个例子. 在自然语言处理中,首先需要决定怎样表示一个序列里单独的单词,解决办法式创建一个词典.然后每个单词的序列表示可以使用该词典长度的一维数组来表示,匹配的位置数据为1,其它位置数据为0. 下面看一个循环神经网络模型: RNN反向传播示意图: 如…