题目链接:http://codeforces.com/problemset/problem/590/A 题目大意是给两种操作,然后给你一个s,一个t,求s至少需要多少次操作到t. 考虑到第一种操作是将某一位取反,而第二种操作是抑或一个数. 显然第一种操作也是可以通过抑或一个数得到的.比如:第i位取反,相当于抑或(1<<i)这个数.于是就将n个数扩大到n+17就可以了,因为100000最多17位. 此外如果p^a^b^c...=q的话,那么a^b^c...=p^q.于是,只需要求出p^q至少需要…
http://acm.hdu.edu.cn/showproblem.php?pid=5668 这题的话,假设每次报x个,那么可以模拟一遍, 假设第i个出局的是a[i],那么从第i-1个出局的人后,重新报数到他假设经过了p个人, 那么自然x = k(n-i)+p(0<= i < n) 即x = p (mod n-i) 然后显然可以得到n个这样的方程,于是就是中国剩余定理了. 代码: #include <iostream> #include <cstdio> #includ…
http://acm.hdu.edu.cn/showproblem.php?pid=5667 这题的关键是处理指数,因为最后结果是a^t这种的,主要是如何计算t. 发现t是一个递推式,t(n) = c*t(n-1)+t(n-2)+b.这样的话就可以使用矩阵快速幂进行计算了. 设列矩阵[t(n), t(n-1), 1],它可以由[t(n-1), t(n-2), 1]乘上一个3*3的矩阵得到这个矩阵为:{[c, 1, b], [1, 0, 0], [0, 0, 1]},这样指数部分就可以矩阵快速幂了…
http://acm.hdu.edu.cn/showproblem.php?pid=5666 这题的关键是q为质数,不妨设线段上点(x0, y0),则x0+y0=q. 那么直线方程则为y = y0/x0x,如果存在点(x1, y1)在此直线上, 那么y1 = y0*x1/x0,而y0 = q-x0, 于是y1 = (q-x0)*x1/x0 = q*x1/x0-x1, 因为x0 < q,于是(x0, q) = 1, 于是x0 | x1, 而x1 < x0,于是x1 = x0, 也就是说三角形内部…
题目链接:http://codeforces.com/problemset/problem/601/A 题目大意是有铁路和陆路两种路,而且两种方式走的交通工具不能在中途相遇. 此外,有铁路的地方肯定没有陆路. 这种情况下就会有一个结论,就是至少有一种交通可以直接1到n. 这样只需要对另一种跑一个最短路就OK了. 代码: #include <iostream> #include <cstdio> #include <cstdlib> #include <cmath&…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5585 题目大意就是求大数是否能被2,3,5整除. 我直接上了Java大数,不过可以对末尾来判断2和5,对所有位的和来判断3. 代码就不粘了.…
Problem Description    "Guanxi" is a very important word in Chinese. It kind of means "relationship" or "contact". Guanxi can be based on friendship, but also can be built on money. So Chinese often say "I don't have one…
http://219.244.176.199/JudgeOnline/problem.php?id=1239 这是这次陕西省赛的G题,题目大意是一个n*n的点阵,点坐标从(1, 1)到(n, n),每个点都有权值,然后从(x, y)引x轴的垂线,然后构成一个三角形,三个顶点分别是(0, 0),(x, 0)和(x, y).求三角形内点的权值和,包括边界,n的范围是1000,m的范围是100000,说起来也比较坑..学弟n*m的复杂度竟然水过去了,目测比赛数据比较水..不过我挂到我们OJ上给了一组随…
题目链接:http://gdutcode.sinaapp.com/problem.php?cid=1031&pid=5 这个题目一看就是一道数论题,应该考虑使用容斥原理,这里对lcm进行容斥. 不过直接上去是T,考虑到序列中同时存在i和ki的话,其实只需要考虑i,所以先对序列中为倍数的对进行处理. 这里的容斥用了hqw的写法. 代码: #include <iostream> #include <cstdio> #include <cstdlib> #includ…
题目链接:http://gdutcode.sinaapp.com/problem.php?cid=1031&pid=2 题目由于要找对称的路径,那么狠明显可以把右下角的每一块加到左上角对应的每一块上.然后就变成从左上角走到对角线的最短路径的个数. 先跑一遍最短路径得到p(i, j)从起点到(i, j)的最短路径. 然后就是找最短路径的个数.显然cnt(i, j)是它周围点能通过最短路径到它的cnt的和.这一处可以使用记忆化搜索来完成. 代码: #include <iostream> #…