Apache Spark MLlib的简介】的更多相关文章

MLlib 是构建在 Spark 上的分布式机器学习库,充分利用了 Spark 的内存计算和适合迭代型计算的优势,将性能大幅度提升.同时由于 Spark 算子丰富的表现力, 让大规模机器学习的算法开发不再复杂. MLlib 是 一 些 常 用 的 机 器 学 习 算 法 和 库 在Spark 平台上的实现.MLlib 是 AMPLab 的在研机器学习项目 MLBase 的底层组件. MLBase 是一个机器学习平台,详细见 http://www.cnblogs.com/zlslch/p/5726…
Apache Spark MLlib是Apache Spark体系中重要的一块拼图:提供了机器学习的模块.只是,眼下对此网上介绍的文章不是非常多.拿KMeans来说,网上有些文章提供了一些演示样例程序,而这些程序基本和Apache Spark 官网上的程序片断类似:在得到训练模型后,差点儿都没有展示怎样使用该模型.程序运行流程.结果展示以及举例測试数据等部分. 笔者依据Apache Spark官网上的程序片断.写了一个完整的调用MLlib KMeans库的測试程序,并成功在Spark 1.0 +…
Shark是构建在Spark和Hive基础之上的数据仓库. 目前,Shark已经完成学术使命,终止开发,但其架构和原理仍具有借鉴意义. 它提供了能够查询Hive中所存储数据的一套SQL接口,兼容现有的Hive QL语法. 这样,熟悉Hive QL或者SQL的用户可以基于Shark进行快速的Ad-Hoc. Reporting等类型的SQL查询. Shark底层复用Hive的解析器. 优化器以及元数据存储和序列化接口. Shark会将Hive QL编译转化为一组Spark任务,进行分布式运算.…
Spark Streaming通过将流数据按指定时间片累积为RDD,然后将每个RDD进行批处理,进而实现大规模的流数据处理.其吞吐量能够超越现有主流流处理框架Storm,并提供丰富的API用于流数据计算. Spark Streaming 是一个批处理的流式计算框架.它的核心执行引擎是 Spark,适合处理实时数据与历史数据混合处理的场景,并保证容错性. Spark Streaming 是构建在 Spark 上的实时计算框架,扩展了 Spark 流式大数据处理能力. Spark Streaming…
简单地说,GraphX是大规模图计算框架. GraphX 是 Spark 中的一个重要子项目,它利用 Spark 作为计算引擎,实现了大规模图计算的功能,并提供了类似 Pregel 的编程接口. GraphX 的出现,将 Spark 生态系统变得更加完善和丰富:同时以其与 Spark 生态系统其他组件很好的融合,以及强大的图数据处理能力,在工业界得到了广泛的应用. GraphX 是常用图算法在 Spark 上的并行化实现,同时提供了丰富的 API 接口.图算法是很多复杂机器学习算法的基础,在单机…
Tachyon是一个分布式内存文件系统,可以理解为内存中的HDFS. 为了提供更高的性能,将数据存储剥离Java Heap. 用户可以基于Tachyon实现RDD或者文件的跨应用共享,并提供高容错机制,保证数据的可靠性.…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .机器学习概念 1.1 机器学习的定义 在维基百科上对机器学习提出以下几种定义: l“机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能”. l“机器学习是对能通过经验自动改进的计算机算法的研究”. l“机器学习是用数据或以往的经验,以此优化计算机程序的性能标准.” 一种经常引用的英文定义是:A computer program is said t…
欢迎转载,转载请注明出处,徽沪一郎. 概要 本文简要描述线性回归算法在Spark MLLib中的具体实现,涉及线性回归算法本身及线性回归并行处理的理论基础,然后对代码实现部分进行走读. 线性回归模型 机器学习算法是的主要目的是找到最能够对数据做出合理解释的模型,这个模型是假设函数,一步步的推导基本遵循这样的思路 假设函数 为了找到最好的假设函数,需要找到合理的评估标准,一般来说使用损失函数来做为评估标准 根据损失函数推出目标函数 现在问题转换成为如何找到目标函数的最优解,也就是目标函数的最优化…
原文地址:https://www.ibm.com/developerworks/cn/opensource/os-cn-spark-practice4/ 引言 提起机器学习 (Machine Learning),相信很多计算机从业者都会对这个技术方向感到兴奋.然而学习并使用机器学习算法来处理数据却是一项复杂的工作,需要充足的知识储备,如概率论,数理统计,数值逼近,最优化理论等.机器学习旨在使计算机具有人类一样的学习能力和模仿能力,这也是实现人工智能的核心思想和方法.传统的机器学习算法,由于技术和…
一.简介 FPGrowth算法是关联分析算法,它采取如下分治策略:将提供频繁项集的数据库压缩到一棵频繁模式树(FP-tree),但仍保留项集关联信息.在算法中使用了一种称为频繁模式树(Frequent Pattern Tree)的数据结构.FP-tree是一种特殊的前缀树,由频繁项头表和项前缀树构成. 相关术语: 1.项与项集 这是一个集合的概念,以购物车为例,一件商品就是一项[item],若干项的集合为项集,如{特步鞋,安踏运动服}为一个二元项集. 2.关联规则 关联规则用于表示数据内隐含的关…