网络:两层卷积,两层全连接,一层softmax 代码: import numpy as np from keras.utils import to_categorical from keras import Sequential from keras import layers from keras import optimizers from keras.datasets import mnist from PIL import Image (train_x, train_y), (test_…
下载python源代码之后,使用: import input_data mnist = input_data.read_data_sets('MNIST_data/',one_hot=True) 下载下来的数据集分成: mnist.train.images 60000*784 mnist.train.labels 60000*10 mnist.test.images 60000*784 mnist.test.labels 60000*10…
#加载TF并导入数据集 import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True) #设置训练的超参数,学习率 训练迭代最大次数,输入数据的个数 learning_rate= 0…
# 导入模块 import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 加载数据 from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True) #模型训练 # 设置超参数 learning_rate =…
之前我们讲了神经网络的起源.单层神经网络.多层神经网络的搭建过程.搭建时要注意到的具体问题.以及解决这些问题的具体方法.本文将通过一个经典的案例:MNIST手写数字识别,以代码的形式来为大家梳理一遍神经网络的整个过程. 一 .MNIST手写数字数据集介绍 MNIST手写数字数据集来源于是美国国家标准与技术研究所,是著名的公开数据集之一,通常这个数据集都会被作为深度学习的入门案例.数据集中的数字图片是由250个不同职业的人纯手写绘制,数据集获取的网址为:http://yann.lecun.com/…
前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型,常用层的Dense全连接层.Activation激活层和Reshape层.还有其他方法训练手写数字识别模型,可以基于pytorch实现的,<Pytorch实现基于卷积神经网络的面部表情识别(详细步骤)> 这篇就是基于pytorch实现,pytorch里也封装了mnist的数据集,实现方法应该类似…
上一篇我们提到了回归问题中的梯度下降算法,而且我们知道线性模型只能解决简单的线性回归问题,对于高维图片,线性模型不能完成这样复杂的分类任务.那么是不是线性模型在离散值预测或图像分类问题中就没有用武之地了呢? 本篇我们就套用regression中的部分机制来处理classification中的问题. 在这里首先介绍一下激活函数. 所谓激活函数,实际上就是引入非线性因子,将线性模型去线性化,增强模型的表达能力.ReLU激活函数是我要介绍的第一个激活函数,其定义式为φ(z)=max{0,z},图像表示…
手写数字库很容易建立,但是总会很浪费时间.Google实验室的Corinna Cortes和纽约大学柯朗研究所的Yann LeCun建有一个手写数字数据库,训练库有60,000张手写数字图像,测试库有10,000张. 请访问原站 http://yann.lecun.com/exdb/mnist/ 该数据库在一个文件中包含了所有图像,使用起来有所不便.如果我把每个图像分别保存,成了图像各自独立的数据库. 并在Google Code中托管. 如果你有需要,欢迎在此下载: http://yann.le…
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站点:www.skyseraph.com Overview 本文系“SkySeraph AI 实践到理论系列”第一篇,咱以AI界的HelloWord 经典MNIST数据集为基础,在Android平台,基于TensorFlow,实现CNN的手写数字识别.Code~ Practice Environmen…
持久化的基于L2正则化和平均滑动模型的MNIST手写数字识别模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献Tensorflow实战Google深度学习框架 实验平台: Tensorflow1.4.0 python3.5.0 MNIST数据集将四个文件下载后放到当前目录下的MNIST_data文件夹下 定义模型框架与前向传播 import tensorflow as tf # 定义神经网络结构相关参数 INPUT_NODE = 784 OUTPUT_NODE = 10 LA…