数据框是用于存储数据的二维结构,分为行和列,一行和一列的交叉位置是一个cell,该cell的位置是由行索引和列索引共同确定的.可以通过at/iat,或loc/iloc属性来访问数据框的元素,该属性后跟一个中括号:[row,col],中括号内 row表示行索引或行标签,col表示列索引或列标签.如果省略row, 那么row维度使用“:”代替,格式是 [ :, col] ,表示访问所有行的特定列:如果省略col ,格式是[row],表示访问特定行的所有列. 有以下数据框对象df,其数据和索引如下:…
Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学习笔记(五)合并 concat Pandas学习笔记(六)合并 merge Pandas学习笔记(七)plot画图 原文:https://morvanzhou.github.io/tutorials/data-manipulation/np-pd/3-2-pd-indexing/ 有删改 下面例子是以 6X…
常用的数据存储介质是数据库和csv文件,pandas模块包含了相应的API对数据进行输入和输出: 对于格式化的平面文件:read_table() 对于csv文件:read_csv().to_csv() 对于SQL查询:read_sql.to_sql() 一,平面文件 把按照界定符分割的格式化文件读取到DataFrame中,使用read_table()函数来实现: pandas.read_table( filepath_or_buffer: Union[str, pathlib.Path], se…
DataFrame的这些操作和Series很相似,这里简单介绍一下. 一,应用和应用映射 apply()函数对每个轴应用一个函数,applymap()函数对每个元素应用一个函数: DataFrame.apply(self, func, axis=0, raw=False, result_type=None, args=(), **kwds) DataFrame.applymap(self, func) 定义一个函数fun,使用apply()函数把fun应用到由DataFrame对象的列构成的一维…
数据框和序列结构中都有轴标签,轴标签的信息存储在Index对象中,轴标签的最重要的作用是: 唯一标识数据,用于定位数据 用于数据对齐 获取和设置数据集的子集. 本文重点关注如何对序列(Series)和数据框(DataFrame)进行切片(slice),切块(dice).如何获取和设置子集. 下表列出数据框最基本的操作及其语法: 一,最基本的选择操作 最基本的选择都是使用中括号[]来实现,但是只能实现单个维度的选择.序列(Series)最基本的选择是使用行标签来选择一个标量值,数据框(DataFr…
数据框(Dataframe)作为一种十分标准的数据结构,是数据分析中最常用的数据结构,在Python和R中各有对数据框的不同定义和操作. Python 本文涉及Python数据框,为了更好的视觉效果,使用jupyter notebook作为演示的编辑器;Python中的数据框相关功能集成在数据分析相关包pandas中,下面对一些常用的关于数据框的知识进行说明: 1.数据框的创建 import pandas as pd from numpy import random a = [i for i i…
接着前天的豆瓣书单信息爬取,这一篇文章看一下利用pandas完成对数据的存储. 回想一下我们当时在最后得到了六个列表:img_urls, titles, ratings, authors, details. 我们如何对这些数据进行存储:让每一本书的每一个元素可以一一对应起来,形成第一本书的书名.作者等等在一起,下一本书的书名.作者在一起. 这里我们接触一个新的数据存储形式:pandas库里的DataFrame. pandas.DataFrame() DataFrame是一个表格型的数据结构,它含…
序列内置一些函数,用于循环对序列的元素执行操作. 一,应用和转换函数 应用apply 对序列的各个元素应用函数: Series.apply(self, func, convert_dtype=True, args=(), **kwds) 参数注释: func:应用的函数,可以是自定义的函数,或NumPy函数 convert_dtype:默认值是True,尝试把func应用的结果转换为更好的数据类型,如果设置为False,把结果转换为dtype=object. args:元组,在序列值之后,传递给…
pandas是基于NumPy构建的模块,含有使数据分析更快更简单的操作工具和数据结构,是数据分析必不可少的五个包之一.pandas包含序列Series和数据框DataFrame两种最主要数据结构,索引Index是跟序列和数据框密切相关的数据结构. 通常情况下,引入pandas的约定,只要在代码中看到pd,就要联想到pandas: import pandas as pd 一,数据结构 序列是由一组数据(各种NumPy数据类型),以及一组与之相关的数据标签(索引)组成,序列不要求数据类型是相同的.序…
上篇我们了解了Python中pandas内封装的关于数据框的常用操作方法,而作为专为数据科学而生的一门语言,R在数据框的操作上则更为丰富精彩,本篇就R处理数据框的常用方法进行总结: 1.数据框的生成 利用data.frame()函数来创建数据框,其常用参数如下: ...:数据框的构成向量的变量名,顺序即为生成的数据框列的顺序 row.names:对每一行命名的向量 stringAsFactors:是否将数据框中字符型数据类型转换为因子型,默认为FALSE > a <- 1:10 > b…