Luogu P4463 [国家集训队] calc】的更多相关文章

WJMZBMR的题果然放在几年后看来仍然挺神,提出了一种独特的优化DP的方式 首先我们想一个暴力DP,先定下所有数的顺序(比如强制它递增),然后最后乘上\(n!\)种排列方式就是答案了 那么我们容易想出一个DP,令\(f_{i,j}\)表示前\(i\)个数中,最大的数小于等于\(j\)的方案数是多少 显然有转移: \[f_{i,j}=f_{i-1,j-1}\times j+f_{i,j-1}\] 但这样DP是\(O(nA)\)的,需要用拉格朗日插值进行优化,不会拉格朗日插值的可以看一下浅谈拉格朗…
传送门 设\(dp[i][j]\)为考虑\(i\)个数,其中最大值不超过\(j\)的答案,那么转移为\[dp[i][j]=dp[i-1][j-1]\times i\times j+dp[i][j-1]\] 即最大值不超过\(j-1\)的答案加上最大值刚好为\(j\)的答案,乘上\(i\)是因为\(j\)可以放在\(i\)个数里随便哪个位置 考虑把转移拆开\[dp[i][j]=\sum_{k=0}^{j-1}dp[i-1][k]\times i\times (k+1)\] 如果把\(i\)看成列,…
分析 代码 #include<bits/stdc++.h> using namespace std; ][],Ans; inline int pw(int x,int p){ ; while(p){ )res=1ll*res*x%mod; x=1ll*x*x%mod; p>>=; } return res; } int main(){ int i,j,k; scanf("%d%d%d",&A,&n,&mod); m=*n+; ;i<…
题目 P4463 [国家集训队] calc 集训队的题目真是做不动呀\(\%>\_<\%\) 朴素方程 设\(f_{i,j}\)为前\(i\)个数值域\([1,j]\),且序列递增的总贡献,则有: \[f_{i,j}=f_{i-1,j-1}*j+f{i,j-1}\] 由于递增序列可以全排列的:\(ans=f_{n,A}×n!\) 时间复杂度\(O(nA)\) 证明一 设\(f_{i,j}\)为关于\(j\)的\(2i\)次多项式,则\(f_{i-1,j-1}*j\)为关于\(j\)的2i-1次…
题目链接 luogu P2757 [国家集训队]等差子序列 题解 线段树好题 我选择暴力 代码 // luogu-judger-enable-o2 #include<cstdio> inline int read() { int x = 0,f = 1; char c = getchar(); while(c < '0' || c > '9')c = getchar(); while(c <= '9' && c >= '0') x = x * 10 +…
题目链接 luogu P2619 [国家集训队2]Tree I 题解 普通思路就不说了二分增量,生成树check 说一下坑点 二分时,若黑白边权有相同,因为权值相同优先选白边,若在最有增量时出现黑白等权边则更新出 > 和 = 最小值等价,那么不会更新到 = 情况, 因为等价,那么处理时只需看做把等价的黑白两边交换即可 需要每次直接减去 增量 * need 的价值 代码 #include<cstdio> #include<algorithm> const int maxn =…
题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\large \sum_{i=1}^n\sum_{j=1}^m lcm(i,j)\) \(lcm\)没法玩,我们转到\(gcd\)形式: \(\large \sum_{i=1}^n\sum_{j=1}^m \frac{i*j}{gcd(i,j)}\) 根据套路,我们去枚举\(gcd\) \(\large \s…
P1297 [国家集训队]单选错位 题目背景 原 <网线切割>请前往P1577 题目描述 gx和lc去参加noip初赛,其中有一种题型叫单项选择题,顾名思义,只有一个选项是正确答案.试卷上共有n道单选题,第i道单选题有ai个选项,这ai个选项编号是1,2,3,…,ai,每个选项成为正确答案的概率都是相等的.lc采取的策略是每道题目随机写上1-ai的某个数作为答案选项,他用不了多少时间就能期望做对 \sum_{i=1}^n \frac{1}{a_i}∑i=1n​ai​1​ 道题目.gx则是认认真…
P2619 [国家集训队2]Tree I 题意 题目描述 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有\(need\)条白色边的生成树. 题目保证有解. 输入输出格式 输入格式: 第一行\(V,E,need\)分别表示点数,边数和需要的白色边数. 接下来\(E\)行 每行\(s,t,c,col\)表示这边的端点(点从\(0\)开始标号),边权,颜色(\(0\)白色\(1\)黑色). 输出格式: 一行表示所求生成树的边权和. 输入输出样例 输入样例#1: 2 2 1 0 1…
嘟嘟嘟 这道题dp虽然不难,但是我还是没推出来,感觉最近脑子不太好用啊. 于是就跑去问神仙gjx(全国前三!)了.(外出集训真是好) 神仙不愧是神仙,一会儿就想出来了,而且方法还比网上的题解好懂. dp[i][j]表示用值域为[1, i]的数,凑出的所有合法序列的值的和. 然后规定序列必须是严格递增的,这样答案再乘以一个\(n!\)就行了. 转移的时候,我们考虑\(i\)这个数用不用上,于是有:\(dp[i][j] = dp[i - 1][j] +i * dp[i - 1][j - 1]\).现…