1 2 损失函数+惩罚函数 2阶导数…
1 最优化概论 (1) 最优化的目标 最优化问题指的是找出实数函数的极大值或极小值,该函数称为目标函数.由于定位\(f(x)\)的极大值与找出\(-f(x)\)的极小值等价,在推导计算方式时仅考虑最小化问题就足够了.极少的优化问题,比如最小二乘法,可以给出封闭的解析解(由正规方程得到).然而,大多数优化问题,只能给出数值解,需要通过数值迭代算法一步一步地得到. (2) 有约束和无约束优化 一些优化问题在要求目标函数最小化的同时还要求满足一些等式或者不等式的约束.比如SVM模型的求解就是有约束优化…
  一阶板,一次压合即成,可以想像成最普通的板二阶板,两次压合,以盲埋孔的八层板为例,先做2-7层的板,压好,这时候2-7的通孔埋孔已经做好了,再加1层和8层压上去,打1-8的通孔,做成整板.三阶板就比上面更复杂,先压3-6层,再加上2和7层,最后加上1到8层,一共要压合三次,一般厂家做不了.   一阶的比较简单,流程和工艺都好控制. 二阶的就开始麻烦了,一个是对位问题,一个打孔和镀铜问题.二阶的设计有多种,一种是各阶错开位置,需要连接次邻层时通过导线在中间层连通,做法相当于2个一阶HDI.第二…
目录 一. 前言 1.1 本文动机 1.2 PBR知识体系 1.3 本文内容及特点 二. 初阶:PBR基本认知和应用 2.1 PBR的基本介绍 2.1.1 PBR概念 2.1.2 与物理渲染的差别 2.1.3 PBR的特征 2.2 PBR的衍变历史 2.2.1 Lambert(1760年) 2.2.2 Smith(1967年) 2.2.3 Phong(1973年) 2.2.4 Cook-Torrance(1982年) 2.2.5 Oren Nayarh(1994年) 2.2.6 Schlick(…
一.xgboost模型函数形式 xgboost也是GBDT的一种,只不过GBDT在函数空间进行搜索最优F的时候,采用的是梯度下降法也就是一阶泰勒展开:而xgboost采用的是二阶泰勒展开也就是牛顿法,去每次逼近最优的F,泰勒展开越多与原函数形状越接近,比如在x0处进行展开,其展开越多,x0附近与原函数值越接近,且这个附近的区域越大.另外一个xgboost加入了正则化项,有效防止过拟合. xgboost与GBDT都是采用的cart树中的回归树来解决所有问题,回归树的预测输出是实数分数,可以用于回归…
集成学习之Boosting -- AdaBoost 集成学习之Boosting -- Gradient Boosting 集成学习之Boosting -- XGBoost Gradient Boosting 可以看做是一个总体的算法框架,起始于Friedman 的论文 [Greedy Function Approximation: A Gradient Boosting Machine] .XGBoost (eXtreme Gradient Boosting) 是于2015年提出的一个新的 Gr…
原文:Matlab随笔之插值与拟合(上) 1.拉格朗日插值 新建如下函数: function y=lagrange(x0,y0,x) %拉格朗日插值函数 %n 个节点数据以数组 x0, y0 输入(注意 Matlat 的数组下标从1开始), %m 个插值点以数组 x 输入,输出数组 y 为 m 个插值 n=length(x0);m=length(x); :m z=x(i); s=0.0; :n p=1.0; :n if j~=k p=p*(z-x0(j))/(x0(k)-x0(j)); end…
SupportVector Machines are learning models used forclassification: which individuals in a population belong where? 支持向量机(SVM)定义:支持向量机是主要用于解决分类问题的学习模型. 感知机 在讲解SVM之前我们先回到1956年达特矛斯会议之后,在会议中确定了我们学科的名字AI的同时,也激起了一片人工智能热,正是在这次浪潮中出现了一个人-罗森布拉特. 他是一位心理医生,在神经感知…
深度学习在美团配送 ETA 预估中的探索与实践 比前一版本有改进:   基泽 周越 显杰 阅读数:32952019 年 4 月 20 日   1. 背景 ETA(Estimated Time of Arrival,“预计送达时间”),即用户下单后,配送人员在多长时间内将外卖送达到用户手中.送达时间预测的结果,将会以”预计送达时间”的形式,展现在用户的客户端页面上,是配送系统中非常重要的参数,直接影响了用户的下单意愿.运力调度.骑手考核,进而影响配送系统整体成本和用户体验. 对于整个配送系统而言,…
工作原理 基于集成算法的多个树累加, 可以理解为是弱分类器的提升模型 公式表达 基本公式 目标函数 目标函数这里加入了损失函数计算 这里的公式是用的均方误差方式来计算 最优函数解 要对所有的样本的损失值的期望, 求解最小的程度作为最优解 集成算法表示 集成算法中对所有的树进行累加处理 公式流程分解 每加一棵树都应该在之前基础上有一个提升 损失函数 叶子节点惩罚项 损失函数加入到基本公式目标函数中 多余出来的常数项就用 c 表示即可 目标函数推导 如上图. 三个树, 真实值 1000 , 第一棵树…
本文链接:https://blog.csdn.net/qq_18234121/article/details/82763385 作者:冻人的蓝鲸梁思成 视频分割算法可以从时域和空域两个角度考虑.时域分割算法利用视频流时域连续性,通过 相邻帧的时域变化来检测运动目标.在摄像头静止的情况下,常用的方法有帧差法和减背景法. 帧差法比较直观实用,对光照的变化干扰不敏感,但是 对目标的检测不准确,对于缓慢运动的目标甚至可 能无法提取出目标边界,对于快速运动的目标提取 出的目标区域又过大.减背景法容易得到目…
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有一些 也可以划归到计算机视觉中去.这都不重要,只要知道有这么个方法,能为自己 所用,或者从中得到灵感,这就够了. 8. Edge Detection 边缘检测也是图像处理中的一个基本任务.传统的边缘检测方法有基于梯度 算子,尤其是 Sobel 算子,以及经典的 Canny 边缘检测.到现在,Cann…
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有一些 也可以划归到计算机视觉中去.这都不重要,只要知道有这么个方法,能为自己 所用,或者从中得到灵感,这就够了. 8. Edge Detection 边缘检测也是图像处理中的一个基本任务.传统的边缘检测方法有基于梯度 算子,尤其是 Sobel 算子,以及经典的 Canny 边缘检测.到现在,Cann…
翻译 局部不变特征探测器:一项调查 摘要 -在本次调查中,我们概述了不变兴趣点探测器,它们如何随着时间的推移而发展,它们如何工作,以及它们各自的优点和缺点.我们首先定义理想局部特征检测器的属性.接下来是对过去四十年中根据不同类别的特征提取方法组织的文献的概述.然后,我们对选择的方法进行更详细的分析,这些方法对研究领域产生了特别重大的影响.最后总结并展望未来的研究方向. 1引言 在本节中,我们将讨论局部(不变)特征的本质.这个词我们的意思是什么?使用局部特征有什么好处?我们可以用它们做什么?理想的…
数值优化(Numerical Optimization)学习系列-无梯度优化(Derivative-Free Optimization) 2015年12月27日 18:51:19 下一步 阅读数 4357更多 分类专栏: 数值优化   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/fangqingan_java/article/details/48946903 概述 在实际应用中,有些目…
1.背景 ETA(Estimated Time of Arrival,“预计送达时间”),即用户下单后,配送人员在多长时间内将外卖送达到用户手中.送达时间预测的结果,将会以”预计送达时间”的形式,展现在用户的客户端页面上,是配送系统中非常重要的参数,直接影响了用户的下单意愿.运力调度.骑手考核,进而影响配送系统整体成本和用户体验. 对于整个配送系统而言,ETA既是配送系统的入口和全局约束,又是系统的调节中枢.具体体现在: ETA在用户下单时刻就需要被展现,这个预估时长继而会贯穿整个订单生命周期,…
Alink漫谈(十) :线性回归实现 之 数据预处理 目录 Alink漫谈(十) :线性回归实现 之 数据预处理 0x00 摘要 0x01 概念 1.1 线性回归 1.2 优化模型 1.3 损失函数&目标函数 1.4 最小二乘法 0x02 示例代码 0x03 整体概述 0x04 基础功能 4.1 损失函数 4.1.1 导数和偏导数 4.1.2 方向导数 4.1.3 Hessian矩阵 4.1.4 平方损失函数 in Alink 4.2 目标函数 4.2.1 梯度 4.2.2 梯度下降法 4.2.…
目录 基于图像的光照(Image Based Lighting,IBL) The Split Sum Approximation 过滤环境贴图 预计算BRDF积分 预计算辐射度传输(Precomputed Radiance Transfer,PRT) 球谐(Spherical Harmonics,SH) 球谐光照(Spherical Harmonic Lighting) Diffuse 物体的球谐光照 Glossy 物体的球谐光照 球谐光照预计算 Transfer 球谐函数的旋转(SH Rota…
之前在逻辑回归原理小结这篇文章中,对逻辑回归的原理做了小结.这里接着对scikit-learn中逻辑回归类库的我的使用经验做一个总结.重点讲述调参中要注意的事项. 1. 概述 在scikit-learn中,与逻辑回归有关的主要是这3个类.LogisticRegression, LogisticRegressionCV 和logistic_regression_path.其中LogisticRegression和LogisticRegressionCV的主要区别是LogisticRegressio…
  指数平滑法 原数数据如下: 点击数据——数据分析 选择指数平滑 最一次平滑 由于我们选择的区域是B1:B22,第一个单元格“钢产量”,被当做标志,所以我们应该勾选标志.当我们勾选了标志后,列中的第一个单元格将不被用于计算,计算从第二个单元格开始. 结果如下: 做二次平滑 这里,我们不再采用标志,所以数据区间选择在C3:C22 对比一下 阻尼系数=0.3 阻尼系数=0.05 阻尼系数=0.9 画在一张图上对比下,可见阻尼系数越大,曲线越平.         移动平均(一阶和二阶) 同理可以使用…
现在常用的SPICE仿真软件为方便用户使用都提供了较好的用户界面,在用仿真库中的元器件连成原理图后就可以进行仿真(当然要设置必要的仿真参数),但实际上只是用原理图自动产生了SPICE的格式语句,还是要通过读取语句来进行仿真,这是历史的遗留问题.在当时的技术条件下,不能用图形方式输入电路结构,只能通过文本文件来描述,也就是所谓网表.SPICE软件的设计者规范了要进行仿真的电路对应的SPICE网表文件格式,还定义了许多仿真描述语句和分析控制语句等,使仿真软件能通过读取这些特殊信息来进行相关计算和运行…
合并的要点: 1.datagid的单元格合并原理是table中tr,td的布局实现; 2.合并的时机实在其datagridcreate事件中实现; 3.认识一个对象TableCellCollection,它是由TableCell组成的集合,TableCell可以看成一个标题. 实现下面的效果; 前台只有一个空DataGrid,后台源码如下: private DataTable dt = null; protected void Page_Load(object sender, EventArgs…
1. 3D分析 1.1. 3D Features toolset 工具 工具 描述 3D Features toolset (3D 要素工具集) Add Z Information 添加 Z 信息 添加关于具有 Z 值的要素类中的要素的高程属性的信息. Buffer 3D 3D 缓冲 围绕点或线创建三维缓冲区以生成球形或圆柱形的多面体要素. Difference 3D 3D 差异 消除目标要素类中部分与减法要素类中闭合的多面体要素体积重叠的多面体要素. Enclose Multipatch 封闭…
原文链接:http://blog.csdn.net/v_july_v/article/details/7624837 作者:July.pluskid :致谢:白石.JerryLead 出处:结构之法算法之道blog. 前言 动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力,二者这个东西也不好讲清楚,尽管网上已经有朋友写得不错了(见文末参考链接),但在描述数学公式的时候还是显得…
三种edge Step (阶梯) Ramp (坡) Roof 因为噪声的存在, ramp edge是最常见的. 一阶和二阶算子在ramp edge处的表现 一阶和二阶算子对噪声的敏感性 从上自下, 高斯噪声的方差分别为0, 0.1, 1, 10. 所以在进行edge detection前若要平滑去噪处理.…
尺度不变特征变换匹配算法 对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越.1.SIFT综述 尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置.尺度.旋转不变量,此算法由 David Lowe在1999年所发表,2004年完善总结. 其应用范围包含物体辨识.机器人地图感知与导航.影像缝合.3D模型建立.手势辨识.影像追踪和动作比…
http://blog.csdn.net/zddblog/article/details/7521424 目录(?)[-] 尺度不变特征变换匹配算法详解 Scale Invariant Feature TransformSIFT Just For Fun zdd  zddmailgmailcom or zddhubgmailcom SIFT综述 高斯模糊 1二维高斯函数 2 图像的二维高斯模糊 3分离高斯模糊 1 尺度空间理论 2 尺度空间的表示 3 高斯金字塔的构建 尺度空间在实现时使用高斯金…
http://cos.name/2013/01/lda-math-gamma-function/ 1. 神奇的Gamma函数1.1 Gamma 函数诞生记学高等数学的时候,我们都学习过如下一个长相有点奇特的Gamma函数 Γ(x)=∫∞0tx−1e−tdt 通过分部积分的方法,可以推导出这个函数有如下的递归性质 Γ(x+1)=xΓ(x) 于是很容易证明,Γ(x) 函数可以当成是阶乘在实数集上的延拓,具有如下性质 Γ(n)=(n−1)! 学习了Gamma 函数之后,多年以来我一直有两个疑问: 这个…
尺度不变特征变换匹配算法详解Scale Invariant Feature Transform(SIFT)Just For Fun zdd  zddmail@gmail.com 对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越. 1.SIFT综述 尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置.尺度.旋转不变量,此算法由 Da…