一.最大似然估计与最大后验概率 1.概率与统计 概率与统计是两个不同的概念. 概率是指:模型参数已知,X未知,p(x1) ... p(xn) 都是对应的xi的概率 统计是指:模型参数未知,X已知,根据观测的现象,求模型的参数 2.似然函数与概率函数 似然跟概率是同义词,所以似然也是表示概率,但这个概率有些不一样. 似然是指:模型在不同参数下, p(x1) ... p(xn) 发生的概率 似然估计是指:模型的参数未知,X已知,根据观测现象(X),估计模型参数的过程 最大似然估计(为什么要最大):…
参考文献:http://blog.csdn.net/zouxy09/article/details/8537620 极大似然估计 已知样本满足某种概率分布,但是其中具体的参数不清楚,极大似然估计估计就是把待估参数看做是确定性的量,只是其取值未知.最佳估计就是使得产生当前样本的概率最大下的参数值. 贝叶斯估计 已知样本满足某种概率分布,但参数未知.贝叶斯估计把待估参数看成符合某种先验概率分布的随机变量.对样本进行观测的过程就是把先验概率密度转化为后验概率密度,这样就利用样本信息修正了对参数的初始估…
不多说,直接上干货! 机器学习十大算法之一:EM算法(即期望最大化算法).能评得上十大之一,让人听起来觉得挺NB的.什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题.神为什么是神,因为神能做很多人做不了的事.那么EM算法能解决什么问题呢?或者说EM算法是因为什么而来到这个世界上,还吸引了那么多世人的目光. 我希望自己能通俗地把它理解或者说明白,但是,EM这个问题感觉真的不太好用通俗的语言去说明白,因为它很简单,又很复杂.简单在于它的思想,简单在于其仅包含了两个步骤就能完…
GMM及EM算法 标签(空格分隔): 机器学习 前言: EM(Exception Maximizition) -- 期望最大化算法,用于含有隐变量的概率模型参数的极大似然估计: GMM(Gaussian Mixture Model) -- 高斯混合模型,是一种多个高斯分布混合在一起的模型,主要应用EM算法估计其参数: 本篇博客首先从简单的k-means算法给出EM算法的迭代形式,然后用GMM的求解过程给出EM算法的宏观认识:最后给出EM的标准形式,并分析EM算法为什么收敛. K-Means Cl…
我希望自己能通俗地把它理解或者说明白,但是,EM这个问题感觉真的不太好用通俗的语言去说明白,因为它很简单,又很复杂.简单在于它的思想,简单在于其仅包含了两个步骤就能完成强大的功能,复杂在于它的数学推理涉及到比较繁杂的概率公式等.如果只讲简单的,就丢失了EM算法的精髓,如果只讲数学推理,又过于枯燥和生涩,但另一方面,想把两者结合起来也不是件容易的事.所以,我也没法期待我能把它讲得怎样.希望各位不吝指导. EM模型 在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参…
在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(LatentVariable).最大期望经常用在机器学习和计算机视觉的数据聚类(DataClustering)领域.最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值:第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值.M步上找到的参数估计值被用于下一个E步计算中…
最大期望算法:EM算法. 在统计计算中,最大期望算法(EM)是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量. 最大期望算法经过两个步骤交替进行计算: 第一步是计算期望(E),利用对隐藏变量的现有估计,计算其最大似然估计值: 第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值. M步上找到的参数估计值被用于下一个E步计算中,这个过程不断交替进行. 总体来说,EM算法流程如下: 1.初始化分布参数 2.重复直到收敛: E步:估未知参数的…
  EM算法是一种迭代算法,是一种用于计算包含隐变量概率模型的最大似然估计方法,或极大后验概率.EM即expectation maximization,期望最大化算法. 1. 极大似然估计   在概率模型中,若已知事件服从的分布或者其他概率模型的参数,那么我们可以通过计算得到某事件发生的概率.而在估计中,这些变成了方向过程:已知一组数据发生的结果,相当于获得了经验概率,通过这组数据假设模型服从什么分布,再通过经验概率求解模型参数.   比如统计学校学生身高服从的概率分布,抽样1000人得到他们的…
1. 什么是EM算法 最大期望算法(Expectation-maximization algorithm,又译为期望最大化算法),是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐性变量. 最大期望算法经过两个步骤交替进行计算, 第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值: 第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值.M步上找到的参数估计值被用于下一个E步计算中,这个过程不断交替进行. 极大似然估计用一句…
最大期望算法 EM算法的正式提出来自美国数学家Arthur Dempster.Nan Laird和Donald Rubin,其在1977年发表的研究对先前出现的作为特例的EM算法进行了总结并给出了标准算法的计算步骤,EM算法也由此被称为Dempster-Laird-Rubin算法.1983年,美国数学家吴建福(C.F. Jeff Wu)给出了EM算法在指数族分布以外的收敛性证明. MLE MLE就是利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值 的计算过程.直白来讲,就是给定了…