Seven Techniques for Data Dimensionality Reduction Seven Techniques for Data Dimensionality Reduction 12 May, 2015 - 12:38 — rs The recent explosion of data set size, in number of records and attributes, has triggered the development of a number of b…
data compression可以使数据占用更少的空间,并且能使算法提速 什么是dimensionality reduction(维数约简)    例1:比如说我们有一些数据,它有很多很多的features,取其中的两个features,如上图所示,一个为物体的长度用cm来度量的,一个也是物体的长度是用inches来度量的,显然这两上features是相关的,画到上图中,近似于一条直线,之所以点不在一条直线上,是因为我们在对物体测量长度是会取整(对cm进行取整,对inches进行取整),这样的…
At some fundamental level, no one understands machine learning. It isn’t a matter of things being too complicated. Almost everything we do is fundamentally very simple. Unfortunately, an innate human handicap interferes with us understanding these si…
10. Dimensionality Reduction Content  10. Dimensionality Reduction 10.1 Motivation 10.1.1 Motivation one: Data Compression 10.2.2 Motivation two: Visualization 10.2 Principal Component Analysis 10.2.1 Problem formulation 10.2.2 Principal Component An…
2.5. Decomposing signals in components (matrix factorization problems) 2.5.1. Principal component analysis (PCA) 4.4. Unsupervised dimensionality reduction 4.4.1. PCA: principal component analysis PCA+ICA 解混过程:https://www.zhihu.com/question/28845451…
机器学习问题可能包含成百上千的特征.特征数量过多,不仅使得训练很耗时,而且难以找到解决方案.这一问题被称为维数灾难(curse of dimensionality).为简化问题,加速训练,就需要降维了. 降维会丢失一些信息(比如将图片压缩成jpeg格式会降低质量),所以尽管会提速,但可能使模型稍微变差.因此首先要使用原始数据进行训练.如果速度实在太慢,再考虑降维. 8.1 维数灾难(The Curse of Dimensionality) 我们生活在三维空间,连四维空间都无法直观理解,更别说更高…
many Machine Learning problems involve thousands or even millions of features for each training instance. not only does this make training extremely slow,it can also make it much harder to find a good solution. this problem is often referred to as th…
博客内容取材于:http://www.cnblogs.com/tornadomeet/archive/2012/06/24/2560261.html Deep learning:三十五(用NN实现数据降维练习) Deep learning:三十四(用NN实现数据的降维) Deep learning:三十三(ICA模型) Deep learning:三十二(基础知识_3) Deep learning:三十一(数据预处理练习) Deep learning:三十(关于数据预处理的相关技巧) Deep…
个人的一些碎碎念: 聚类,直觉就能想到kmeans聚类,另外还有一个hierarchical clustering,但是单细胞里面都用得不多,为什么?印象中只有一个scoring model是用kmean进行粗聚类.(10x就是先做PCA,再用kmeans聚类的) 鉴于单细胞的教程很多,也有不下于10种针对单细胞的聚类方法了. 降维往往是和聚类在一起的,所以似乎有点难以区分. PCA到底是降维.聚类还是可视化的方法,t-SNE呢? 其实稍微思考一下,PCA.t-SNE还有下面的diffusion…
Lecture 14 Dimensionality Reduction 降维 14.1 降维的动机一:数据压缩 Data Compression 现在讨论第二种无监督学习问题:降维. 降维的一个作用是数据压缩,允许我们使用较少的内存或磁盘空间,也加快算法速度. 举例: 假设用两个特征描述同一个物品的长度,x1单位是厘米cm,x2单位是英寸inches.这将导致高度冗余,所以需要减到一维. 将数据从三维降至二维: 将三维向量投射到一个二维的平面上,强迫使得所有的数据都在同一个平面上,降至二维的特征…