人工智能深度学习框架MXNet实战:深度神经网络的交通标志识别训练 MXNet 是一个轻量级.可移植.灵活的分布式深度学习框架,2017 年 1 月 23 日,该项目进入 Apache 基金会,成为 Apache 的孵化器项目.尽管现在已经有很多深度学习框架,包括 TensorFlow, Keras, Torch,以及 Caffe,但 Apache MXNet 因其对多 GPU 的分布式支持而越来越受欢迎. 环境准备1.安装 Anaconda.Anaconda 是一个用于科学计算的 Python…
在学习陈云的教程<深度学习框架PyTorch:入门与实践>的损失函数构建时代码如下: 可我运行如下代码: output = net(input) target = Variable(t.arange(0,10)) criterion = nn.MSELoss() loss = criterion(output, target) loss 运行结果: RuntimeError Traceback (most recent call last) <ipython-input-37-e5c73…
文章目录 深度学习-05 模型保存于加载 什么是模型保存与加载 模型保存于加载API 案例1:模型保存/加载 读取数据 文件读取机制 文件读取API 案例2:CSV文件读取 图片文件读取API 案例3:图片文件读取 图像识别 手写体识别 MNIST数据集 任务目标 网络结构 相关API 关键代码 执行结果 案例4:实现手写体识别 服饰识别 数据集介绍 任务目标 网络结构 关键代码 案例5:实现服饰识别 深度学习-05 模型保存于加载 什么是模型保存与加载 模型保存于加载API 案例1:模型保存/…
本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson7/model_save.py https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson7/model_load.py https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson7/checkpoint_resu…
TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接下来以自己项目中的代码为例. 项目中模型的代码: class TensorFlowDKT(object): def __init__(self, config, batch_size): # 导入配置好的参数 self.hiddens = hiddens = config.modelConfig.h…
内容:包含tensorflow变量作用域.tensorboard收集.模型保存与加载.自定义命令行参数 1.知识点 """ 1.训练过程: 1.准备好特征和目标值 2.建立模型,随机初始化权重和偏置; 模型的参数必须要使用变量 3.求损失函数,误差为均方误差 4.梯度下降去优化损失过程,指定学习率 2.Tensorflow运算API: 1.矩阵运算:tf.matmul(x,w) 2.平方:tf.square(error) 3.均值:tf.reduce_mean(error)…
sklearn模型保存与加载 sklearn模型的保存和加载API 线性回归的模型保存加载案例 保存模型 sklearn模型的保存和加载API from sklearn.externals import joblib # 保存:joblib.dump(estimator, 'test.pkl') # 加载:estimator = joblib.load('test.pkl') 注意:保存的后缀名是.pkl 线性回归的模型保存加载案例 保存模型 # 1.获取数据 data = load_bosto…
https://github.com/chenyuntc/pytorch-book Chapter2 :PyTorch快速入门 + Chapter3: Tensor和Autograd + Chapter4 : 神经网络工具箱nn Tensor 函数名后面带_的函数会修改Tensor本身,例如y.add_(x)会改变y. tensor.numpy()和torch.from_numpy(ndarray)可以完成tensor和ndarray之间的转换.注意它们之间是共享内存的, 其中一个改变会导致另一…
TensorFlow 官方文档:https://www.tensorflow.org/api_guides/python/math_ops # Arithmetic Operators import tensorflow as tf # 用 tf.session.run() 里 feed_dict 参数设置占位 tensor, 如果传入 feed_dict的数据与 tensor 类型不符,就无法被正确处理 x = tf.placeholder(tf.string) y = tf.placehol…
使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练.这时候我们需要掌握如何操作这些模型数据.看完本文,相信你一定会有收获! 1 Tensorflow模型文件 我们在checkpoint_dir目录下保存的文件结构如下: |--checkpoint_dir | |--checkpoint | |--MyModel.meta | |--MyModel.data-00000-of-00001 | |--MyModel.in…