Note -「广义二项级数」浅赏】的更多相关文章

目录 问题引入 思考 Lagrange 插值法 插值过程 代码实现 实际应用 「洛谷 P4781」「模板」拉格朗日插值 「洛谷 P4463」calc 题意简述 数据规模 Solution Step 1 Step 2 证明 代码 「CF 995F」Cowmpany Cowmpensation 题意简述 数据规模 Solution Step 1 Step 2 证明 代码 「CF 662F」The Sum of the k-th Powers 题意简述 数据规模 Solution 代码 「BZOJ 3…
目录 「CF 750E」New Year and Old Subsequence 「洛谷 P4719」「模板」"动态 DP" & 动态树分治 「洛谷 P6021」洪水 「SP 6779」GSS7 「NOIP 2018」「洛谷 P5024」保卫王国 \(\mathcal{Introduction}\) \(\mathcal{Problem~1}\)   给定序列 \(\{a_n\}\),其中 \(a_i\in\mathbb Z\),求其最大子段和(不能为空).   很显然的 DP…
\(\mathcal{Preface}\)   单位根反演,顾名思义就是用单位根变换一类式子的形式.有关单位根的基本概念可见我的这篇博客. \(\mathcal{Formula}\)   单位根反演的公式很简单: \[[k|n]=\frac{1}k\sum_{i=0}^{k-1}\omega_k^{ni} \] \(\mathcal{Proof}\)   分类讨论: \(k|n\). 那么 \((\forall i)(\omega_k^{ni}=1)\),所以右侧为 \(\frac{1}k\su…
目录 Preface 数论函数 积性函数 Dirichlet 卷积 Dirichlet 卷积中的特殊函数 Mobius 函数 & Mobius 反演 Mobius 函数 Mobius 反演 基础应用 约数个数 欧拉函数 反演魔法 例一 例二 例三 魔法中的 tricks 线性筛 trick 筛 筛 筛 刷表 trick Conclusion   UPD:修改了 Euler 筛法代码框架.   若无特别说明,\(x,y\) 等形式变量均 \(\in\mathbb N_+\):\(p\) 为素数.…
  赛上想写,Track Lost 了属于是. \(\mathscr{Intro}\)   Min_25 筛是用于求积性函数前缀和,同时顺带求出一些"有意思"的信息的筛法.   一些记号约定 \(\mathbb P\) 为素数集,对于以 \(p\) 为记号的数,有 \(p\in\mathbb P\). \(p_i\) 表示第 \(i\) 小的素数.特别地,\(p_0=1\). \(\newcommand{\lpf}[0]{\operatorname{lpf}} \lpf(n)\) 表示…
  进阶篇戳这里. 目录 何为「多项式」 基本概念 系数表示法 & 点值表示法 傅里叶(Fourier)变换 概述 前置知识 - 复数 单位根 快速傅里叶正变换(FFT) 快速傅里叶逆变换(IFFT) 迭代实现 例题 「洛谷 P3803」「模板」多项式乘法(FFT) 题意简述 数据规模 快速数论变换(NTT) 原根 实现 NTT 模数 奇怪的模数 - 任意模数 NTT 三模 NTT 拆系数 FFT(MTT) 七次转五次 五次转四次 例题 「洛谷 P4245」「模板」任意模数 NTT 题意简述 数…
目录 圆方树的定义 圆方树的构造 实现 细节 圆方树的运用 「BZOJ 3331」压力 「洛谷 P4320」道路相遇 「APIO 2018」「洛谷 P4630」铁人两项 「CF 487E」Tourists 「SDOI 2018」「洛谷 P4606」战略游戏 「BZOJ 4316」小C的独立集 「洛谷 P5236」「模板」静态仙人掌 「HNOI 2009」「洛谷 P4410」无归岛 圆方树的定义   圆方树是由一个无向图转化出的树形结构.转化方法为: 所有原图的点为"圆点". 对于每个点…
食用前请先了解 SPFA + Dinic/EK 求解 MCMF. Sol. 总所周知,SPFA 牺牲了.于是我们寻求一些更稳定的算法求解 MCMF. 网络流算法的时间属于玄学,暂且判定为混乱中的稳定.那么我们就只能考虑在最短路算法上寻求优化.于是就想到了 Dijkstra. 但 Dijkstra 有一个致命的弱点:无法处理负权边.而我们应用的场景显然含有负权. 开动脑筋想一想可以想到一个"给所有边权加上巨大多权值进而规避负权边"的方法. 但这样在实现中,还需要记录一条最短路目前经过了哪…
最近 Android 转用 Swift 的传闻甚嚣尘上,Swift 的 Github 主页上已经有了一次 merge>>「Port to Android」,让我们对 Swift 的想象又多了一些空间. 本期 fir.im Weekly 一如往期精选了一些实用的 iOS,Swift,Android 的开发工具和源码分享,欢迎订阅! 个人品牌:如何在 Github 打造你的爆款开源项目 由@Siva海浪高 分享在gaohailang. 当我们在 Github 上抛出自己的开源项目,都希望 Repo…
http://3g.163.com/all/article/DM995J240511AQHO.html 选自the Gradient 作者:Sebastian Ruder 机器之心编译 计算机视觉领域常使用在 ImageNet 上预训练的模型,它们可以进一步用于目标检测.语义分割等不同的 CV 任务.而在自然语言处理领域中,我们通常只会使用预训练词嵌入向量编码词汇间的关系,因此也就没有一个能用于整体模型的预训练方法.Sebastian Ruder 表示语言模型有作为整体预训练模型的潜质,它能由浅…