关于深度学习之TensorFlow简单实例】的更多相关文章

1.对TensorFlow的基本操作 import tensorflow as tf import os os.environ[" a=tf.constant(2) b=tf.constant(3) with tf.Session() as sess: print("a:%i" % sess.run(a),"b:%i" % sess.run(b)) print("Addition with constants: %i" % sess.r…
紧接着上一篇的文章<深度学习(TensorFlow)环境搭建:(二)Ubuntu16.04+1080Ti显卡驱动>,这篇文章,主要讲解如何安装CUDA+CUDNN,不过前提是我们是已经把NVIDIA显卡驱动安装好了 一.安装CUDA CUDA(Compute Unified Device Architecture),是英伟达公司推出的一种基于新的并行编程模型和指令集架构的通用计算架构,它能利用英伟达GPU的并行计算引擎,比CPU更高效的解决许多复杂计算任务,想使用GPU就必须要使用CUDA.…
[原创 深度学习与TensorFlow 动手实践系列 - 4]第四课:卷积神经网络 - 高级篇 提纲: 1. AlexNet:现代神经网络起源 2. VGG:AlexNet增强版 3. GoogleNet:多维度识别 4. ResNet:机器超越人类识别 5. DeepFace:结构化图片的特殊处理 6. U-Net:图片生成网络 7. 实例:剖析VGG,用模型进行模型参数可视化,特征提取,目标预测 期待目标: 1. 掌握AlexNet结构特点,神经网络各层之间特征传导关系,模型参数总数计算 2…
[原创 深度学习与TensorFlow 动手实践系列 - 3]第三课:卷积神经网络 - 基础篇 提纲: 1. 链式反向梯度传到 2. 卷积神经网络 - 卷积层 3. 卷积神经网络 - 功能层 4. 实例:卷积神经网络MNIST分类 期待目标: 1. 清楚神经网络优化原理,掌握反向传播计算. 2. 掌握卷积神经网络卷积层的结构特点,关键参数,层间的连接方式. 3. 了解不同卷积神经网络功能层的作用,会进行简单的卷积神经网络结构设计. 4. 能够运行TensorFlow卷积神经网络 MNIST. …
深度学习调用TensorFlow.PyTorch等框架 一.开发目标目标 提供统一接口的库,它可以从C++和Python中的多个框架中运行深度学习模型.欧米诺使研究人员能够在自己选择的框架内轻松建立模型,同时也简化了这些模型的产品离子化. 支持TensorFlow.PyTorch.TorchScript和Keras等深度学习框架. 使用一个API从任何支持的框架运行模型,运行TensorFlow模型看起来就像运行PyTorch模型. x = np.array([1, 2, 3, 4]) y =…
深度学习之TensorFlow构建神经网络层 基本法 深度神经网络是一个多层次的网络模型,包含了:输入层,隐藏层和输出层,其中隐藏层是最重要也是深度最多的,通过TensorFlow,python代码可以构建神经网络层函数,比如我们称之为add_layer()函数,由于神经网络层的工作原理是一层的神经元处理完成后得到一个结果,然后传递给下一个神经元,这就类似于函数的return与参数变量,所以最终代码的模型应该如下图所示: 通过add_layer的层层嵌套,实现上一个add_layer的结果返回给…
一.硬件采购 近年来,人工智能AI越来越多被人们所了解,尤其是AlphaGo的人机围棋大战之后,机器学习的热潮也随之高涨.最近,公司采购了几批设备,通过深度学习(TensorFlow)来研究金融行业相关问题,学习机器学习我们需要满足一定的硬件要求,本文主要是介绍硬件选购的相关事宜. 现在主力的深度学习都是通过多显卡计算来提升系统的计算能力,所以硬件的采购核心是显卡(GPU),下面是整个硬件采购的清单及大致费用如下: 以上的配置一台设备的总共费用大致:2.8W左右.公司购买了2台,费用大致6W,两…
创建图.启动图 Shift+Tab Tab 变量介绍: F etch Feed 简单的模型构造 :线性回归 MNIST数据集 Softmax函数 非线性回归神经网络   MINIST数据集分类器简单版本 二次代价函数 sigmoid函数 交叉熵代价函数 对数释然代价函数 拟合 防止过拟合 Dropout 优化器 优化器的使用 如何提升准确率? 1.改每批训练多少个 2.改神经网络中间层(神经元层数,每层的个数,每层用的激活函数,权重的初值用随机正态.要不要防止过拟合) 3.改计算loss的函数:…
TensorFlow是一个采用数据流图(data flow graphs),用于数值计算的开源软件库,说白了,就是一个库. 小编自己在Ubuntu搭建了深度学习框架TensorFlow,感觉挺简单,现在总结如下. 1.安装Anaconda 在ubuntu系统版本的Anaconda3已经集成了3.6版本的Python,安装步骤如下: a.下载Anoconda3 b.安装:以下操作在系统终端执行 输入yes: 默认安装位置 将Anconda的安装路径添加到环境变量中去,点yes,然后静静等待安装.…
深度学习之TensorFlow安装与初体验 学习前 搞懂一些关系和概念 首先,搞清楚一个关系:深度学习的前身是人工神经网络,深度学习只是人工智能的一种,深层次的神经网络结构就是深度学习的模型,浅层次的神经网络结构是浅度学习的模型. 浅度学习:层数少于3层,使用全连接的一般被认为是浅度神经网络,也就是浅度学习的模型,全连接的可能性过于繁多,如果层数超过三层,计算量呈现指数级增长,计算机无法计算到结果,所以产生了深度学习概念 深度学习:层数可以有很多层,但是并不是全连接的传递参数,如上图中右边是一个…