Kaggle入门--使用scikit-learn解决DigitRecognition问题 @author: wepon @blog: http://blog.csdn.net/u012162613 1.scikit-learn简单介绍 scikit-learn是一个基于NumPy.SciPy.Matplotlib的开源机器学习工具包.採用Python语言编写.主要涵盖分类. 回归和聚类等算法,比如knn.SVM.逻辑回归.朴素贝叶斯.随机森林.k-means等等诸多算法,官网上代码和文档 都非常…
Kaggle入门 1:竞赛 我们将学习如何为Kaggle竞赛生成一个提交答案(submisson).Kaggle是一个你通过完成算法和全世界机器学习从业者进行竞赛的网站.如果你的算法精度是给出数据集中最高的,你将赢得比赛.Kaggle也是一个实践你机器学习技能的非常有趣的方式.Kaggle网站有几种不同类型的比赛.其中的预测一个就是预测在泰坦尼克号沉没的时候哪个乘客会成为幸存者. 在这个任务和下一个任务我们将学习如何提交我们的答案.我们的数据是csv格式.你可以在这里下载数据开始比赛.每一行重现…
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉验证 交叉验证用于评估模型性能和进行参数调优(模型选择).分类任务中交叉验证缺省是采用StratifiedKFold. sklearn.cross_validation.cross_val_score(estimator, X, y=None, scoring=None, cv=None, n_jo…
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的句子,我以自己的理解意译. 翻译自:Scikit Learn:Machine Learning in Python 作者: Fabian Pedregosa, Gael Varoquaux 先决条件 Numpy, Scipy IPython matplotlib scikit-learn 目录 载入…
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import numpy as np from sklearn.pipeline import Pipeline from sklearn.linear_model import SGDClassifier from sklearn.grid_search import GridSearchCV from sk…
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的常见准则有: 1.      均方误差(mean squared error,MSE): 2.      平均绝对误差(mean absolute error,MAE) 3.      R2 score:scikit learn线性回归模型的缺省评价准则,既考虑了预测值与真值之间的差异,也考虑了问题…
自从入了数据挖掘的坑,就在不停的看视频刷书,但是总觉得实在太过抽象,在结束了coursera上Andrew Ng 教授的机器学习课程还有刷完一整本集体智慧编程后更加迷茫了,所以需要一个实践项目来扎实之前所学的知识.于是就参考kaggle上的starter项目Titanic,并选取了kernel中的一篇较为祥尽的指南,从头到尾实现了一遍.因为kaggle入门赛相关方面的参考和指导非常少,因此写博给需要学习的同学做个小参考,也记录下数据挖掘的学习历程.新手上路,如果博文有误或缺失,还希望各位大神指正…
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.…
kaggle入门之如何使用 - CSDN博客 http://blog.csdn.net/mdjxy63/article/details/78221955 kaggle比赛之路(一) -- 新手注册账号并fork一个notebook - CSDN博客 http://blog.csdn.net/memoryjdch/article/details/75670308 XX-Net 使用教程(Across the Great Wall) - ChangeZhou - 博客园 https://www.cn…
Reference: http://blog.csdn.net/witnessai1/article/details/52612012 Kaggle是一个数据分析的竞赛平台,网址:https://www.kaggle.com/ 企业或者研究者可以将数据.问题描述.期望的指标发布到Kaggle上,以竞赛的形式向广大的数据科学家征集解决方 案,类似于KDD-CUP(国际知识发现和数据挖掘竞赛).Kaggle上的参赛者将数据下载下来,分析数据,然后运用机 器学习.数据挖掘等知识,建立算法模型,解决问题…