讲解几个重点知识 1.对于tf.get_variable()中的reuse,意思是,如果有名字一模一样的变量,则对这个变量继续使用,如果没有名字一模一样的变量,则创建这个变量 2.options=run_options, run_metadata=run_metadata这玩意不好使 3.记住accuracy的argmax() 4.求accuracy三步:(1)argmax() (2)cast() (3)reduce_mean() 以下是mnist_inference的内容 import ten…
TensorBoard简介 Tensorflow发布包中提供了TensorBoard,用于展示Tensorflow任务在计算过程中的Graph.定量指标图以及附加数据.大致的效果如下所示, TensorBoard工作机制 TensorBoard 通过读取 TensorFlow 的事件文件来运行.TensorFlow 的事件文件包括了你会在 TensorFlow 运行中涉及到的主要数据.关于TensorBoard的详细介绍请参考TensorBoard:可视化学习.下面做个简单介绍. Tensorf…
我们在ZBrush®雕刻模型的时候,发现模型布线不利于雕刻,这使我们不得不对模型进行重建细分,而重建细分之后的模型细节已经没有了,这个时候我们就需要把原来高模的细节映射到新的模型上面. 接下来我们介绍下如何把模型的细节映射到低模上 1.我们先把要修改的模型复制一个,如图所示. 2.然后修改你复制的那个模型,比如你要对模型重建细分. 3.然后在SubTool中把与该模型无关的物体隐藏起来. 4.接下来我们就可以对模型进行映射了.在SubTool菜单栏下找到ProjectAll,第一次就直接点击进行…
kafka在Zookeeper上的节点如下图: 该图片盗自大牛的博客http://blog.csdn.net/lizhitao/article/details/23744675 服务端开启的情况下,进入客户端的命令:{zookeeper目录}/bin/zkCli.sh 以下是几个zookeeper客户端用的命令,不只kafka,其他任何注册到zookeeper的服务都可以使用这些命令. 1,ls ls会显示该节点下的子节点信息 比如: ls / 显示zookeeper根目录下的子节点,其中kaf…
在我的开发任务中,突然给我提出了一个待办任务需要获取当前任务节点上以任务节点的表单信息,刚开始搞得我有点措手不及,后来仔细是靠后,灵感一下,直接操作流程的bpmn信息就可以获取到节点信息嘛,顺着这个思路,我整理出了自己的思路: (1)将节点大体分为两类,一类是网关节点,另外一类就是用户任务节点,使用List集合,将网关与用户任务进行分类 (2)获取上一节点,我们就需要从bpmn的连线信息入手,固定连线的targtaetRef,辨别sourceRef节点的类型,当是用户任务时,放进 List fr…
先搞点基础的 注意注意注意,这里虽然很基础,但是代码应注意: 1.从writer开始后边就错开了 2.writer后可以直接接writer.close,也就是说可以: writer = tf.summary.FileWriter("./log", graph=g) writer.close() import tensorflow as tf g = tf.Graph() with g.as_default(): input1 = tf.get_variable("input1…
系列博客链接: (一)TensorFlow框架介绍:https://www.cnblogs.com/kongweisi/p/11038395.html 本文概述: 说明图的基本使用 应用tf.Graph创建图.tf.get_default_graph获取默认图 知道开启TensorBoard过程 知道图当中op的名字 1.什么是图结构 图包含了一组tf.Operation代表计算单元的对象和tf.Tensor代表计算单元之间流动的数据. 2.图相关操作 2.1 图中操作.会话默认属性 默认op.…
创建神经网络模型 1.构建神经网络结构,并进行模型训练 import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt #python的结果可视化模块 """定义一个添加神经层的函数 inputs:输入数据 in_size:输入神经元的个数 out_size:输出神经元的个数 activation_function:激活函数"""def add_layer(inpu…
首先进行数据预处理,需要生成.tsv..jpg文件 import matplotlib.pyplot as plt import numpy as np import os from tensorflow.examples.tutorials.mnist import input_data LOG_DIR = 'log' SPRITE_FILE = 'mnist_sprite.jpg' META_FIEL = "mnist_meta.tsv" # 存储索引和标签 def create_…
这样是比较好的一个summary命名 (1)'networks'.'layer_%d' % n_layer.'weights'三个命名空间相互叠加 (2) if i % 50 == 0: result = sess.run(merged, feed_dict={xs: x_data, ys: y_data}) writer.add_summary(result, i) 逐步写入的程序如上面所示 (3)最后的tensorboard图还是比较完美的 import numpy as np import…