WOE(证据权重)为何这样计算?】的更多相关文章

更多大数据分析.建模等内容请关注公众号<bigdatamodeling> 先简单回顾一下WOE的含义.假设x是类别变量或分箱处理过的连续变量,含R个类别或分段,取值为{C1, ..., Cr, ..., CR}:y是目标变量,取值为0(Good)或1(Bad).x和y的频数表如下: 1.概念回顾 先简单回顾一下WOE的含义.假设x是类别变量或分箱处理过的连续变量,含R个类别或分段,取值为{C1, ..., Cr, ..., CR}:y是目标变量,取值为0(Good)或1(Bad).x和y的频数…
1. WOE(weight of evidence, 证据权重) WOE是一种衡量正常样本( Good)和违约样本( Bad)分布的差异方法 WOE=ln(Distr Good/Distr Bad)例如 :在上表 在上表 中年龄在 年龄在 23-26这组 样本 的 WOE值为: ln(0.13610.2813)=−0.72613…
转载:https://zhuanlan.zhihu.com/p/38440477 转载:https://blog.csdn.net/starzhou/article/details/78930490 转载:https://www.cnblogs.com/wzdLY/p/9649101.html 1.离散的优势: (1)离散化后的特征对异常数据有很强的鲁棒性:比如一个特征是年龄>30是1,否则0.如果特征没有离散化,一个异常数据“年龄300岁”会给模型造成很大的干扰: (2)逻辑回归属于广义线性模…
信用评分卡模型在国外是一种成熟的预测方法,尤其在信用风险评估以及金融风险控制领域更是得到了比较广泛的使用,其原理是将模型变量WOE编码方式离散化之后运用logistic回归模型进行的一种二分类变量的广义线性模型. 本文重点介绍模型变量WOE以及IV原理,为表述方便,本文将模型目标标量为1记为违约用户,对于目标变量为0记为正常用户: 则WOE(weight of Evidence 证据权重)其实就是自变量取某个值的时候对违约比例的一种影响, 怎么理解这句话呢?我下面通过一个图标来进行说明. Woe…
1.IV的用途 IV的全称是Information Value,中文意思是信息价值,或者信息量. 我们在用逻辑回归.决策树等模型方法构建分类模型时,经常需要对自变量进行筛选.比如我们有200个候选自变量,通常情况下,不会直接把200个变量直接放到模型中去进行拟合训练,而是会用一些方法,从这200个自变量中挑选一些出来,放进模型,形成入模变量列表.那么我们怎么去挑选入模变量呢? 挑选入模变量过程是个比较复杂的过程,需要考虑的因素很多,比如:变量的预测能力,变量之间的相关性,变量的简单性(容易生成和…
woe全称是"Weight of Evidence",即证据权重,是对原始自变量的一种编码形式. 进行WOE编码前,需要先把这个变量进行分组处理(离散化) 其中,pyi是这个组中响应客户(即模型中预测变量取值为"是"或1的个体,也叫坏样本)占所有样本中所有响应客户的比例,pni是这个组中未响应客户(也叫好样本)占样本中所有未响应客户的比例: #yi是这个组中响应客户的数量,#ni是这个组中未响应客户的数量,#yT是样本中所有响应客户的数量,#nT是样本中所有未响应客…
1.IV的用途   IV的全称是Information Value,中文意思是信息价值,或者信息量. 我们在用逻辑回归.决策树等模型方法构建分类模型时,经常需要对自变量进行筛选.比如我们有200个候选自变量,通常情况下,不会直接把200个变量直接放到模型中去进行拟合训练,而是会用一些方法,从这200个自变量中挑选一些出来,放进模型,形成入模变量列表.那么我们怎么去挑选入模变量呢? 挑选入模变量过程是个比较复杂的过程,需要考虑的因素很多,比如:变量的预测能力,变量之间的相关性,变量的简单性(容易生…
1.IV的用途 IV的全称是Information Value,中文意思是信息价值,或者信息量. 我们在用逻辑回归.决策树等模型方法构建分类模型时,经常需要对自变量进行筛选.比如我们有200个候选自变量,通常情况下,不会直接把200个变量直接放到模型中去进行拟合训练,而是会用一些方法,从这200个自变量中挑选一些出来,放进模型,形成入模变量列表.那么我们怎么去挑选入模变量呢? 挑选入模变量过程是个比较复杂的过程,需要考虑的因素很多,比如:变量的预测能力,变量之间的相关性,变量的简单性(容易生成和…
1.IV的用途 IV的全称是Information Value,中文意思是信息价值,或者信息量. 我们在用逻辑回归.决策树等模型方法构建分类模型时,经常需要对自变量进行筛选.比如我们有200个候选自变量,通常情况下,不会直接把200个变量直接放到模型中去进行拟合训练,而是会用一些方法,从这200个自变量中挑选一些出来,放进模型,形成入模变量列表.那么我们怎么去挑选入模变量呢? 挑选入模变量过程是个比较复杂的过程,需要考虑的因素很多,比如:变量的预测能力,变量之间的相关性,变量的简单性(容易生成和…
WOE:信用评分卡模型中的变量离散化方法 2016-03-21 生存分析 在做回归模型时,因临床需要常常需要对连续性的变量离散化,诸如年龄,分为老.中.青三组,一般的做法是ROC或者X-tile等等.今天介绍一种在信用卡评分系统中常用的连续变量离散化方法.目的是给大家在临床数据分析中提供一种借鉴思路. 最初接触信用卡评分系统是在2013年SAS中国数据分析大赛总决赛上,题目是用历史数据建立一个信用卡评分系统,其中的变量离散化技术主要用到WOE(Weight of Evidence)翻译过来叫证据…