目录 非盲增强网络结构 训练目标 压缩系数预测子网络 网络结构 根据块QP判决结果得到帧QP预测结果 保持时序连续性 实验 发表在2019年TCSVT. 本文提出了一个兼具 预测压缩系数 和 非盲去压缩失真 功能的 伪-盲(pseudo-blind)去压缩失真网络.该网络是在Inception的基础上修改的,并加上了一个 压缩系数预测子网络. 这篇文章的Introduction.相关工作回顾.失真成因都写得很一般,我们看个方法就好. 值得一提的是,这可能是第一篇尝试"盲"QP增强论文,…
今天给大家带来一篇来自CVPR 2017关于人脸识别的文章. 文章题目:Deep Convolutional Neural Network using Triplets of Faces, Deep Ensemble, and 摘要: 文章动机:人脸识别在一个没有约束的环境下,在计算机视觉中是一个非常有挑战性的问题.同一个身份的人脸当呈现不同的装饰,不同的姿势和不同的表情都可以使人脸看起来完全不同.这种相同身份的变化可以压倒不同身份的变化,这样给人脸识别带来更大的挑战,特别是在没有约束的环境下.…
A NEW HYPERSPECTRAL BAND SELECTION APPROACH BASED ON CONVOLUTIONAL NEURAL NETWORK 文章地址:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8127792 写在前面:各位朋友好,这是本人第一篇博客,为了不打击自己,决定从一篇易懂的paper的阅读笔记开始写起,写的不好不对的地方望各位朋友不吝赐教,在此先行谢过. 1.文章简介: 这是一篇运用卷积神经网…
Kalchbrenner’s Paper Kal的这篇文章引用次数较高,他提出了一种名为DCNN(Dynamic Convolutional Neural Network)的网络模型,在上一篇(Kim’s Paper)中的实验结果部分也验证了这种模型的有效性.这个模型的精妙之处在于Pooling的方式,使用了一种称为动态Pooling的方法. 下图是这个模型对句子语义建模的过程,可以看到底层通过组合邻近的词语信息,逐步向上传递,上层则又组合新的Phrase信息,从而使得句子中即使相离较远的词语也…
今年去参加了ASPLOS 2017大会,这个会议总体来说我感觉偏系统和偏软一点,涉及硬件的相对少一些,对我这个喜欢算法以及硬件架构的菜鸟来说并不算非常契合.中间记录了几篇相对比较有趣的paper,今天简单写一篇. SC-DCNN: Highly-Scalable Deep Convolutional Neural Network using Stochastic Computing 单位作者: 我们知道在神经网络计算中,最主要的计算就是乘加,本篇重点就是解释了什么是Stochastic Comp…
代码:https://github.com/Yochengliu/Relation-Shape-CNN 文章:https://arxiv.org/abs/1904.07601 作者直播:https://www.bilibili.com/video/av61824733 作者维护了一个收集一系列点云论文.代码.数据集的github仓库:https://github.com/Yochengliu/awesome-point-cloud-analysis 这篇paper是CVPR 2019 Oral…
[论文标题]Automatic recommendation technology for learning resources with convolutional neural network (2016 ISET) [论文作者]Xiaoxuan Shen, Baolin Yi*, Zhaoli Zhang,Jiangbo Shu, and Hai Liu [论文链接]Paper(5-pages // Double column) <札记非FY> [摘要] 自动学习资源推荐已经成为一个越来…
ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 d…
目录 摘要 一.引言 二.相关工作 基于视图和体素的方法 点云上的深度学习 相关性学习 三.形状意识表示学习 3.1关系-形状卷积 建模 经典CNN的局限性 变换:从关系中学习 通道提升映射 3.2性质 置换不变性 对刚性变换鲁棒 点相互作用 权重共享 3.3再讨论2D网格卷积 3.4用于点云分析的RS-CNN 3.5应用细节 四.实验 4.1点云分析 形状分类 形状部件分割 法向量估计 4.2 RS-CNN设计分析 消融研究 聚合函数A 映射函数M 低级关系h 点置换和刚性变换的鲁棒性 4.3…
论文地址:FLGCNN:一种新颖的全卷积神经网络,用于基于话语的目标函数的端到端单耳语音增强 论文代码:https://github.com/LXP-Never/FLGCCRN(非官方复现) 引用格式:Zhu Y, Xu X, Ye Z. FLGCNN: A novel fully convolutional neural network for end-to-end monaural speech enhancement with utterance-based objective funct…