一.Transformer模型 2017年,Google在论文 Attention is All you need 中提出了 Transformer 模型,其使用 Self-Attention 结构取代了在 NLP 任务中常用的 RNN 网络结构.相比 RNN 网络结构,其最大的优点是可以并行计算.Transformer 的整体模型架构如下图所示 0x1:Transformer概览 首先,让我们先将Transformer模型视为一个黑盒,如下图所示.在机器翻译任务中,将一种语言的一个句子作为输入…
假设你现在有了数据,也搞到了预算,一切就绪,准备开始训练一个大模型,一显身手了,"一朝看尽长安花"似乎近在眼前 -- 且慢!训练可不仅仅像这两个字的发音那么简单,看看 BLOOM 的训练或许对你有帮助. 近年来,语言模型越训越大已成为常态.大家通常会诟病这些大模型本身的信息未被公开以供研究,但很少关注大模型训练技术这种背后的知识.本文旨在以 1760 亿参数的语言模型 BLOOM 为例,阐明训练此类模型背后的软硬件工程和技术要点,以促进大家对大模型训练技术的讨论. 首先,我们要感谢促成…
向前算法解决隐马尔可夫模型似然度问题 作者:白宁超 2016年7月11日22:54:57 摘要:最早接触马尔可夫模型的定义源于吴军先生<数学之美>一书,起初觉得深奥难懂且无什么用场.直到学习自然语言处理时,才真正使用到隐马尔可夫模型,并体会到此模型的妙用之处.马尔可夫模型在处理序列分类时具体强大的功能,诸如解决:词类标注.语音识别.句子切分.字素音位转换.局部句法剖析.语块分析.命名实体识别.信息抽取等.另外广泛应用于自然科学.工程技术.生物科技.公用事业.信道编码等多个领域.本文写作思路如下…
该系列教程系个人原创,并完整发布在个人官网刘江的博客和教程 所有转载本文者,需在顶部显著位置注明原作者及www.liujiangblog.com官网地址. Python及Django学习QQ群:453131687 模型的元数据,指的是"除了字段外的所有内容",例如排序方式.数据库表名.人类可读的单数或者复数名等等.所有的这些都是非必须的,甚至元数据本身对模型也是非必须的.但是,我要说但是,有些元数据选项能给予你极大的帮助,在实际使用中具有重要的作用,是实际应用的'必须'. 想在模型中增…
模型的Meta选项 本文阐述所有可用的元数据选项,你可以在模型的Meta类中设置他们 Meta选项 abstract 如果为True,就表示抽象基类 app_label 如果模型在INSTALLED_APPS之外被定义,则必须通过app_label声明它属于哪个app db_table 该模型所用数据表的名称.Django默认使用你的 model class 的名称和包含这个 model 的 app 名称来构建 数据库的表名称. db_tablespace 表空间名字.默认值是项目设置中的DEF…
N-Gram(有时也称为N元模型)是自然语言处理中一个非常重要的概念,通常在NLP中,人们基于一定的语料库,可以利用N-Gram来预计或者评估一个句子是否合理.另外一方面,N-Gram的另外一个作用是用来评估两个字符串之间的差异程度.这是模糊匹配中常用的一种手段.本文将从此开始,进而向读者展示N-Gram在自然语言处理中的各种powerful的应用. 基于N-Gram模型定义的字符串距离 利用N-Gram模型评估语句是否合理 使用N-Gram模型时的数据平滑算法 欢迎关注白马负金羁的博客 htt…
模型的元数据,指的是“除了字段外的所有内容”,例如排序方式.数据库表名.人类可读的单数或者复数名等等.所有的这些都是非必须的,甚至元数据本身对模型也是非必须的.但是,我要说但是,有些元数据选项能给予你极大的帮助,在实际使用中具有重要的作用,是实际应用的‘必须’. 想在模型中增加元数据,方法很简单,在模型类中添加一个子类,名字是固定的Meta,然后在这个Meta类下面增加各种元数据选项或者说设置项.参考下面的例子: from django.db import models class Ox(mod…
原文:WPF在3D Cad模型中利用TextureCoordinates实现颜色渐变显示偏差值的变化 注:最近在做3D机械模型重建方面的软件,需要根据光栅传感器采集的数据绘制3D图形,并显示出色差以及填充和线框图. 以下转载自:http://blog.csdn.net/wmjcom/article/details/6019460 1.本文的目的:       在制造业领域,对于cad模型和加工零件,有理论值和实测值的区别.理论值是设计人员设计cad模型中的数值,而实测值是加工好零件后检测出的数值…
谷歌大脑提出:基于NAS的目标检测模型NAS-FPN,超越Mask R-CNN 朱晓霞发表于目标检测和深度学习订阅 235 广告关闭 11.11 智慧上云 云服务器企业新用户优先购,享双11同等价格 立即抢购 在这篇文章中: 怎么搜出来? 模型怎么样? One More Thing 本文转载自量子位(QbitAI) 这是一只AI生出的小AI. 谷歌大脑的Quoc Le团队,用神经网络架构搜索 (NAS) ,发现了一个目标检测模型.长这样: △ 看不清请把手机横过来 它的准确率和速度都超过了大前辈…
import base64 import time def timestamp2datems(timestamp): ''' 时间戳转为日期字串,精确到ms.单位s :param timestamp:时间戳 :return:日期字串 ''' local_time = time.localtime(timestamp) # data_head = time.strftime("%Y-%m-%d %H:%M:%S", local_time) data_head = time.strftim…