前言 本文以lfw数据集进行示例 lfw结果集下载地址:http://vis-www.cs.umass.edu/lfw/lfw.tgz insightface源码下载地址:https://github.com/deepinsight/insightface insightface作者提供了完整的工程,能够基本满足并完成人脸识别流程 人脸识别流程4步:1.检测:2.对齐矫正:3.提取特征:特征匹配 其中,检测对齐使用ssh或mtcnn并用dlib即可实现,然后对完成1和2步的人脸图像进行提取特征,…
一.基础知识简介: 1.包的命名介绍: 包的命名没有规则,但是建议遵守包的命名约定:包的命名与包的版本相关,包的名称前面几个字符通常表示作者或公司名,也可以是控件的一个描述词,后面紧跟的Std表示运行期包,Dsgn表示设计期包,然后是版本号.如:MyDataEditStd60,MyDataEditDsgn60. 2.对象浏览器[Object Inspector]中一个属性感知一类控件的原理: 控件属性的感知只不过是将它的一个属性声明为将要感知的控件类而已,例如要感知Image控件,则:prope…
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_126 OpenCV4.1已经发布将近一年了,其人脸识别速度和性能有了一定的提高,这里我们使用opencv来做一个实时活体面部识别的demo 首先安装一些依赖的库 pip install opencv-python pip install opencv-contrib-python pip install numpy pip install pillow 需要注意一点,最好将pip设置国内的阿里云的源,否则安装会很慢 win10…
论文:<Fully Convolutional Networks for Semantic Segmentation> 代码:FCN的Caffe 实现 数据集:PascalVOC 一 数据集制作 PascalVOC数据下载下来后,制作用以图像分割的图像数据集和标签数据集,LMDB或者LEVELDB格式. 最好resize一下(填充的方式). 1. 数据文件夹构成 包括原始图片和标签图片,如下.   然后,构建对应的lmdb文件.可以将所有图片按照4:1的比例分为train:val的比例.每个t…
数据集 DNN 依赖于大量的数据.可以收集或生成数据,也可以使用可用的标准数据集.TensorFlow 支持三种主要的读取数据的方法,可以在不同的数据集中使用:本教程中用来训练建立模型的一些数据集介绍如下: MNIST:这是最大的手写数字(0-9)数据库.它由 60000 个示例的训练集和 10000 个示例的测试集组成.该数据集存放在 Yann LeCun 的主页(http://yann.lecun.com/exdb/mnist/)中.这个数据集已经包含在tensorflow.examples…
Alink漫谈(七) : 如何划分训练数据集和测试数据集 目录 Alink漫谈(七) : 如何划分训练数据集和测试数据集 0x00 摘要 0x01 训练数据集和测试数据集 0x02 Alink示例代码 0x03 批处理 3.1 得到记录数 3.2 随机选取记录 3.2.1 得到总记录数 3.2.2 决定每个task选择记录数 3.2.3 每个task选择记录 3.3 设置训练数据集和测试数据集 0x04 流处理 0x05 参考 0x00 摘要 Alink 是阿里巴巴基于实时计算引擎 Flink…
一.声明 本代码非原创,源网址不详,仅做学习参考. 二.代码 # -*- coding: utf-8 -*- import glob # 返回一个包含有匹配文件/目录的数组 import os.path import random import numpy as np import tensorflow as tf from tensorflow.python.platform import gfile # inception-v3瓶颈层的节点个数 BOTTLENECT_TENSOR_SIZE…
很多正在入门或刚入门TensorFlow机器学习的同学希望能够通过自己指定图片源对模型进行训练,然后识别和分类自己指定的图片.但是,在TensorFlow官方入门教程中,并无明确给出如何把自定义数据输入训练模型的方法.现在,我们就参考官方入门课程<Deep MNIST for Experts>一节的内容(传送门:https://www.tensorflow.org/get_started/mnist/pros),介绍如何将自定义图片输入到TensorFlow的训练模型. 在<Deep M…
人脸检测及识别python实现系列(3)——为模型训练准备人脸数据 机器学习最本质的地方就是基于海量数据统计的学习,说白了,机器学习其实就是在模拟人类儿童的学习行为.举一个简单的例子,成年人并没有主动教孩子学习语言,但随着孩子慢慢长大,自然而然就学会了说话.那么孩子们是怎么学会的呢?很简单,在人类出生之前,有了听觉开始,就开始不断听到各种声音.人类的大脑会自动组织.分类这些不同的声音,形成自己的认识.随着时间的推移,大脑接收到的声音数据越来越多.最终,大脑利用一种我们目前尚未知晓的机制建立了一个…
前言 第一次写博客,有点紧张和兴奋.废话不多说,直接进入正题.如果你渴望使你的电脑能够进行人脸识别:如果你不想了解什么c++.底层算法:如果你也不想买什么树莓派,安装什么几个G的opencv:如果你和我一样是个还没入门的小白,但是想体验一下人脸识别的魅力.那么恭喜你,这篇文章就是为你准备的.让我们开始吧! 一.需要准备的材料 1.一台可以联网的有摄像头的电脑(手动滑稽). 2.python3.7的安装包 二.Python3.7及其第三方包的安装 1.Python3.7的安装 关于python3.…