R语言:计算现金工资的币数】的更多相关文章

新入职的员工,有的没有相应银行卡,需要计算现金工资的币数.实发工资,一般取整数. 简化计算,纸币面值只有100.10.1.4278除以100等于42余78,78除以10等于7余8,8除以1等于8. 复杂计算,纸币面值有100.50.20.10.5.1.4278除以100等于42余78,78除以50等于1余28,28除以20等于1余8,8除以10等于0余8,8除以5等于1余3,3除以1等于3. R语言中,向下取整为%/%,取余为%%. 思路一取整配合取余. 思路二取整配合减法.4278%/%100…
R语言计算moran‘I install.packages("maptools")#画地图的包 install.packages("spdep")#空间统计,moran'I install.packages("tripack") install.packages("RANN") library("maptools") library("spdep") library("trip…
R语言计算出一个N个属性的相关矩阵(),然后再将相关矩阵输出到CSV文件. 读入的数据文件格式如下图所示: R程序采用如下语句: data<-read.csv("I:\\SB\landuse1986\\copy-number-sb2074.landuse.1986.class.csv")//括号内为读入的csv数据文件的绝对地址,其中的斜杠采用向左的双斜杠 write.csv(cor(data,method="spearman"),file="I:\…
更多大数据分析.建模等内容请关注公众号<bigdatamodeling> 在对变量分箱后,需要计算变量的重要性,IV是评估变量区分度或重要性的统计量之一,R语言计算IV值的代码如下: CalcIV <- function(df_bin, key_var, y_var){ N_0<-table(df_bin[, y_var])[1] N_1<-table(df_bin[, y_var])[2] iv_c<-NULL var_c<-NULL for (col in c…
R语言对于数值计算很方便,最近用到了计算方差,标准差的功能,特记录. 数据准备 height <- c(6.00, 5.92, 5.58, 5.92) 1 计算均值 mean(height) [1] 5.855 2 计算中位数 median(height) [1] 5.92 3 计算标准差 sd(height) [1] 0.1871719 4 计算方差 var(height) [1] 0.03503333 5 计算两个变量之间的相关系数 cor(height,log(height)) [1] 0…
R+mongo的组合真是各种坑等着踩 由于mongo中的时间戳普遍使用的是unix timestamp的格式,因此需要对每天的数据进行计算的时候,很容易就想到对timestamp + gap对方式来实现每天的时间范围. 但这时候就埋下了一个坑,这个坑就是计算精度的问题. ms级的时间戳长度是12位,R中会识别成1.421112+e12的格式.gap的则是 1000 * 60 * 60 *24 * i,数量级是10^8.两者相加,在取某个i的时候,会出现加出来的数据与下一天的timestamp对不…
在使用R的时候会发现R对CPU的利用率并不是很高,反正当我在使用R的时候,无论R做何种运算R的CPU利用率都只有百分子几,这就导致一旦计算量大的时候计算时间非常长,会给人一种错觉(R真的在计算吗?会不会我的程序死掉了?).今天,我看到了一篇博客介绍的方法,迫不及待的尝试了一下,只能说:太牛逼了!下面是我的测试截图: 前:…
转自:http://blog.fens.me/r-math-derivative/ 前言 高等数学是每个大学生都要学习的一门数学基础课,同时也可能是考完试后最容易忘记的一门知识.我在学习高数的时候绞尽脑汁,但始终都不知道为何而学.生活和工作基本用不到,就算是在计算机行业和金融行业,能直接用到高数的地方也少之又少,学术和实际应用真是相差太远了. 不过,R语言为我打开了一道高数应用的大门,R语言不仅能方便地实现高等数学的计算,还可以很容易地把一篇论文中的高数公式应用于产品的实践中.因为R语言我重新学…
前言 高等数学是每个大学生都要学习的一门数学基础课,同时也可能是考完试后最容易忘记的一门知识.我在学习高数的时候绞尽脑汁,但始终都不知道为何而学.生活和工作基本用不到,就算是在计算机行业和金融行业,能直接用到高数的地方也少之又少,学术和实际应用真是相差太远了. 不过,R语言为我打开了一道高数应用的大门,R语言不仅能方便地实现高等数学的计算,还可以很容易地把一篇论文中的高数公式应用于产品的实践中.因为R语言我重新学习了高数,让生活中充满数学,生活会变得更有意思. 本节并不是完整的高数计算手册,仅介…
  一, R语言所处理的工作层: 解释一下: 最下面的一层为数据源,往上是数据仓库层,往上是数据探索层,包括统计分析,统计查询,还有就是报告 再往上的三层,分别是数据挖掘,数据展现和数据决策. 由上图可知,R语言是可以用于数据挖掘,数据展现,而后领导根据展现的数据来决策,R语言在数据展现的方面,拥有很强大的功能. 二,R语言的数据结构: 包括如下的几项:包括向量,矩阵,数组,数据框,列表和因子 1,向量: 创建向量的方法一共有三种,分别如下: 第一种,使用c()的这个方法: 由于博客中木有R语言…