opencv8-GPU之相似性计算】的更多相关文章

Solr In Action 笔记(2) 之评分机制(相似性计算) 1 简述 我们对搜索引擎进行查询时候,很少会有人进行翻页操作.这就要求我们对索引的内容提取具有高度的匹配性,这就搜索引擎文档的相似性计算,如何准确的选出最符合查询条件的文档. <这就是搜索引擎>里面对相似性计算进行了简单的介绍. 内容的相似性计算由搜索引擎的检索模型建模,它是搜索引擎的理论基础,为量化相关性提供了一种数学模型,否则没法计算.当然检索模型理论研究存在理想化的隐含假设,即假设用户需求已经通过查询非常清晰明确地表达出…
Caffe框架GPU与MLU计算结果不一致请问如何调试? 某一检测模型移植到Cambricon Caffe上时,发现无法检测出结果,于是将GPU和MLU的运行结果输出并保存后进行对比,发现二者计算结果不一致,如下图所示: 第一张为GPU模式下,第二张为GPU模式,二者使用的输入和数据预处理方式均完全一样,该输出为网络第一层卷积的部分输出. 用Cambricon Caffe提供的test_forward工具验证该模型在CPU和MLU模式下的输入,结果仍不一致,如下图所示: 第一张为MLU模式下的输…
Opencv支持GPU计算,并且包含成一个gpu类用来方便调用,所以不需要去加上什么__global__什么的很方便,不过同时这个类还是有不足的,待opencv小组的更新和完善. 这里先介绍在之前的<opencv4-highgui之视频的输入和输出以及滚动条>未介绍的图像的相似性检测,当然这是cpu版本,然后接着在介绍对应的gpu版本.这里只介绍了PSNR和SSIM两种用来进行对比图像的方法 原理: PSNR: 当我们想检查压缩视频带来的细微差异的时候,就需要构建一个能够逐帧比较差视频差异的系…
最近在工作中要处理好多文本文档,要求找出和每个文档的相识的文档.通过查找资料总结如下几个计算方法: 1.余弦相似性 我举一个例子来说明,什么是"余弦相似性". 为了简单起见,我们先从句子着手. 请问怎样才能计算上面两句话的相似程度? 基本思路是:如果这两句话的用词越相似,它们的内容就应该越相似.因此,可以从词频入手,计算它们的相似程度. 第一步,分词. 第二步,列出所有的词. 第三步,计算词频. 第四步,写出词频向量. 到这里,问题就变成了如何计算这两个向量的相似程度. 我们可以把它们…
图形处理器(英语:Graphics Processing Unit,缩写:GPU),又称显示核心.视觉处理器.显示芯片,是一种专门在个人电脑.工作站.游戏机和一些移动设备(如平板电脑.智能手机等)上图像运算工作的微处理器. 用途是将计算机系统所需要的显示信息进行转换驱动,并向显示器提供行扫描信号,控制显示器的正确显示,是连接显示器和个人电脑主板的重要元件,也是"人机对话"的重要设备之一.显卡作为电脑主机里的一个重要组成部分,承担输出显示图形的任务,对于从事专业图形设计的人来说显卡非常重…
给定N个集合,从中找到相似的集合对,如何实现呢?直观的方法是比较任意两个集合.那么可以十分精确的找到每一对相似的集合,但是时间复杂度是O(n2).此外,假如,N个集合中只有少数几对集合相似,绝大多数集合都不相似,该方法在两两比较过程中"浪费了计算时间".所以,如果能找到一种算法,将大体上相似的集合聚到一起,缩小比对的范围,这样只用检测较少的集合对,就可以找到绝大多数相似的集合对,大幅度减少时间开销.虽然牺牲了一部分精度,但是如果能够将时间大幅度减少,这种算法还是可以接受的.接下来的内容…
参考:https://blog.csdn.net/gamer_gyt/article/details/75165842#t16  https://blog.csdn.net/ymlgrss/article/details/52854589 完整代码已上传至github  https://github.com/chenzhefan/ML_distance 尽量看上面原文链接吧,复制的公式格式不对,代码优化了放在github 欧氏距离 也称欧几里得距离,是指在m维空间中两个点之间的真实距离.欧式距离…
小米笔记本pro:15.6寸,i7-8850,16G,256G,GPU:MX150 测试对象Caffe,MNIST训练 使用纯CPU训练: 1.耗时:11分58秒 2.功耗:35W 使用GPU训练: 1.耗时:1分17秒 2.功耗:49W 笔记本静止功耗:12W 总结: 1.GPU 与 CPU的算力比9.2倍. 2.GPU 与 CPU的能效比5.7倍.…
A:西米喜欢健身 B:超超不爱健身,喜欢打游戏 step1:分词 A:西米/喜欢/健身 B:超超/不/喜欢/健身,喜欢/打/游戏 step2:列出两个句子的并集 西米/喜欢/健身/超超/不/打/游戏 step3:计算词频向量 A:[1,1,1,0,0,0,0] B:[0,1,1,1,1,1,1] step4:计算余弦值 余弦值越大,证明夹角越小,两个向量越相似. step5:python代码实现 import jieba import jieba.analyse def words2vec(wo…
利用sklearn计算文本相似性,并将文本之间的相似度矩阵保存到文件当中.这里提取文本TF-IDF特征值进行文本的相似性计算. #!/usr/bin/python # -*- coding: utf-8 -*- import numpy import os import sys from sklearn import feature_extraction from sklearn.feature_extraction.text import TfidfTransformer from sklea…