Codeforces 题面传送门 & 洛谷题面传送门 期望好题. 首先拆方差: \[\begin{aligned} &E((x-E(x))^2)\\ =&E(x^2)-2E(x)E(E(x))+E(E(x)^2)\\ =&E(x^2)-E(x)^2 \end{aligned} \] 因此我们只需 \(E(x^2)\) 和 \(E(x)\) 即可求解出答案. 考虑 \(x\) 是什么东西.直接从连通块个数的角度下手异常棘手.不过注意到原图是一个仙人掌,因此假设点数.边数.环数…
CodeForces - 789B 当时题意理解的有点偏差,一直wa在了14组.是q等于0的时候,b1的绝对值大于l的时候,当b1的绝对值大于l的时候就应该直接终端掉,不应该管后面的0的. 题意告诉你b1,q,l,m然后b1和q是一个等比序列的首项和公比,然后l是这个序列出现的数绝对值的最大值.m代表序列有m个数不能被计算在内.问你能写出的最多的序列的元素个数.如果有无限多个输出inf. 分析一下,首先就是无限多个出现的情况. 1.b1==0.此时的序列是无限个0,只要0不在m个数中就是inf,…
首先,我们要用到期望的一个性质: 对于两个随机变量$X$和$Y$(不需要相互独立),有$E(X+Y)=E(X)+E(Y)$ 另外,对于一个仙人掌,令$n$为点数,$m$为边数,$c$为简单环个数,$X$为连通块数,则$X=n-(m-c)$(环可以看作有一条无意义的边,对于森林点-边即为连通块数) 我们所求的即$E((X-E(X))^{2})$,将其展开即$E(X^{2})-E(X)^{2}$,后者$E(X)=E(n)-E(m)+E(c)$,以下以$E(m)$为例来考虑: 令$x_{1},x_{2…
Codeforces 题面传送门 & 洛谷题面传送门 大家都是暴力找生成树然后跳路径,代码不到 50 行(暴论)的一说--好,那本蒟蒻决定提供一种代码 150 行,但复杂度也是线性的分类讨论做法. 首先大家都是从"如果存在两个环相交,就一定存在符合要求的路径"这个性质入手的,而我不是.注意到题目条件涉及"简单路径",因此我首先想到的是,如果两个点 \(u,v\) 之间存在三条互不相交的路径,那么 \(u,v\) 在同一个点双连通分量中必定是必要条件,因此不同…
Codeforces 题面传送门 & 洛谷题面传送门 分类讨论神题. 首先看到最大值最小,一眼二分答案,于是问题转化为判定性问题,即是否 \(\exists x_0,y_0,z_0\) 满足 \(\forall i,|x_0-x_i|+|y_0-y_i|+|z_0-z_i|\le mid\). 柿子中带个绝对值,不好直接转化.不过注意到对于任意实数 \(x\) 都有 \(x\le |x|,-x\le |x|\),因此 \(|x-y|\le v\) 的充要条件即是 \(x-y\le v,y-x\l…
Codeforces 题目传送门 & 洛谷题目传送门 简单题,难度 *2500 的 D2F,就当调节一下一模炸裂了的自闭的心情,稍微写写吧. 首先我看到这题的第一反应是分类讨论+数据结构,即枚举其中一个被交换的位置然后用树状数组或类似的数据结构维护另一个决策的贡献,细节似乎挺多的,大概硬刚个大分类讨论上去也可以?不过显然此题有更简便的方法所以这种方法就没写了. 我们来观察一下这个"交换"有什么性质,这个绝对值有点烦,我们不妨将所有 \(i\) 分为两类:\(a_i<b_i…
题意:从区间[L,R]中选取不多于k个数,使这些数异或和尽量小,输出最小异或和以及选取的那些数. 解法:分类讨论. 设选取k个数. 1. k=4的时候如果区间长度>=4且L是偶数,那么可以构造四个数(L,L+1,L+2,L+3),这样的话(L^(L+1)) ^ ((L+2)^(L+3)) = 0,最优 如果L不是偶数,那么看从L+1到R有没有四个数,如果有则取该四个数,否则最小异或和达不到0,也达不到1了,不再考虑k=4,k=3时还有可能等于0,所以转到k=3 2. k=3时,要使异或和为0,那…
题意:给出一个 数列 和一个x 可以对数列一个连续的部分 每个数乘以x  问该序列可以达到的最大连续序列和是多少 思路: 不是所有区间题目都是线段树!!!!!! 这题其实是一个很简单的dp 使用的是分类讨论的思想 我们设置dp数组 dp[1][i] 表示一直没有用x 乘过的数组 必须以i 结尾(i可以不选 也就是空序列)的最大连续和 dp[2][i] 表示i是被x乘过的 必须以i 结尾(i可以不选 也就是空序列)的最大连续和 dp[3][i] 表示i之前的数已经有一段被x乘过了 必须以i 结尾(…
一棵树,q次询问,每次给你三个点a b c,让你把它们选做s f t,问你把s到f +1后,询问f到t的和,然后可能的最大值是多少. 最无脑的想法是链剖线段树……但是会TLE. LCT一样无脑,但是少一个log,可以过. 正解是分类讨论, 如果t不在lca(s,f)的子树内,答案是dis(lca(s,f),f). 如果t在lca(s,f)的子树内,并且dep(lca(s,t))>dep(lca(f,t)),答案是dis(lca(s,t),f): 否则答案是dis(lca(f,t),f). #in…
现场 1 小时 44 分钟过掉此题,祭之 大力分类讨论. 如果 \(|s|=1\),那么显然所有位置都只能填上这个字符,因为你只能这么填. scanf("%d",&n);mmp['+']=0;mmp['-']=1;mmp['*']=2; for(int i=1;i<=n;i++) scanf("%d",&a[i]); char opt[4];scanf("%s",opt+1);int len=strlen(opt+1); i…