热门的消息队列中间件RabbitMQ,分布式任务处理平台Celery,大数据分布式处理的三大重量级武器:Hadoop.Spark.Storm,以及新一代的数据采集和分析引擎Elasticsearch. RabbitMQ RabbitMQ是一个支持Advanced Message Queuing Protocol(AMQP)的开源消息队列实现,由Erlang编写,因以高性能.高可用以及可伸缩性出名.它支持多种客户端,如:Java.Python.PHP..NET.Ruby.JavaScript等.它…
大数据平台搭建(hadoop+spark) 一.基本信息 1. 服务器基本信息 主机名 ip地址 安装服务 spark-master 172.16.200.81 jdk.hadoop.spark.scala spark-slave01 172.16.200.82 jdk.hadoop.spark spark-slave02 172.16.200.83 jdk.hadoop.spark spark-slave03 172.16.200.84 jdk.hadoop.spark 2. 软件基本信息 软…
引言 在之前的大数据学习系列中,搭建了Hadoop+Spark+HBase+Hive 环境以及一些测试.其实要说的话,我开始学习大数据的时候,搭建的就是集群,并不是单机模式和伪分布式.至于为什么先写单机的搭建,是因为作为个人学习的话,单机已足以,好吧,说实话是自己的电脑不行,使用虚拟机实在太卡了... 整个的集群搭建是在公司的测试服务搭建的,在搭建的时候遇到各种各样的坑,当然也收获颇多.在成功搭建大数据集群之后,零零散散的做了写笔记,然后重新将这些笔记整理了下来.于是就有了本篇博文. 其实我在搭…
携程大数据平台负责人张翼分享携程的实时大数据平台的迭代,按照时间线介绍采用的技术以及踩过的坑.携程最初基于稳定和成熟度选择了Storm+Kafka,解决了数据共享.资源控制.监控告警.依赖管理等问题之后基本上覆盖了携程所有的技术团队.今年的两个新尝试是Streaming CQL(华为开源)和JStorm(阿里开源),意在提升开发效率.性能和处理消息拥塞能力,目前已有三分之一的Storm应用已经迁到JStorm 2.1上. 今天给大家分享的是携程在实时数据平台的一些实践,按照时间顺序来分享我们是怎…
引言 在上一篇中 大数据学习系列之五 ----- Hive整合HBase图文详解 : http://www.panchengming.com/2017/12/18/pancm62/ 中使用Hive整合HBase,并且测试成功了.在之前的大数据学习系列之一 ----- Hadoop环境搭建(单机) : http://www.panchengming.com/2017/11/26/pancm55/ 中成功的搭建了Hadoop的环境,本文主要讲的是Hadoop+Spark 的环境.虽然搭建的是单机版,…
分布式系统和大数据处理平台是目前业界关注的热门技术. 1.RabbitMQ RabbitMQ是一个支持AMQP的开源消息队列实现,由Erlang编写,因以高性能.高可用以及可伸缩性出名.它支持多种客户端,如:Java.Python.PHP.Ruby..NET.JavaScript等. 它主要用于分布式系统中存储和转发消息,方便组之间的解耦,消息的发送无需知道消息使用者的存在,反之亦然. AMQP架构中有两个主要组件:Exchange和Queue,两者都在服务端,又称Broker,由RabbitM…
To construct big data distributed platform based on Hadoop is a common method. Hadoop comes fron Google File System  and is its open source realization. Here list the references for studying big data technology, especially on Hadoop. 基于Hadoop进行大数据分布式…
转自:https://www.cnblogs.com/reed/p/7730329.html 今天看到一篇讲得比较清晰的框架对比,这几个框架的选择对于初学分布式运算的人来说确实有点迷茫,相信看完这篇文章之后应该能有所收获. 简介 大数据是收集.整理.处理大容量数据集,并从中获得见解所需的非传统战略和技术的总称.虽然处理数据所需的计算能力或存储容量早已超过一台计算机的上限,但这种计算类型的普遍性.规模,以及价值在最近几年才经历了大规模扩展. 在之前的文章中,我们曾经介绍过有关大数据系统的常规概念.…
分布式流处理是对无边界数据集进行连续不断的处理.聚合和分析.它跟MapReduce一样是一种通用计算,但我们期望延迟在毫秒或者秒级别.这类系统一般采用有向无环图(DAG). DAG是任务链的图形化表示,我们用它来描述流处理作业的拓扑.如下图,数据从sources流经处理任务链到sinks.单机可以运行DAG,但本篇文章主要聚焦在多台机器上运行DAG的情况. 关注点 当选择不同的流处理系统时,有以下几点需要注意的: 运行时和编程模型:平台框架提供的编程模型决定了许多特色功能,编程模型要足够处理各种…
简介 大数据是收集.整理.处理大容量数据集,并从中获得见解所需的非传统战略和技术的总称.虽然处理数据所需的计算能力或存储容量早已超过一台计算机的上限,但这种计算类型的普遍性.规模,以及价值在最近几年才经历了大规模扩展. 在之前的文章中,我们曾经介绍过有关大数据系统的常规概念.处理过程,以及各种专门术语,本文将介绍大数据系统一个最基本的组件:处理框架.处理框架负责对系统中的数据进行计算,例如处理从非易失存储中读取的数据,或处理刚刚摄入到系统中的数据.数据的计算则是指从大量单一数据点中提取信息和见解…