plot accuracy + loss 详情可见:http://www.2cto.com/kf/201612/575739.html 1. caffe保存训练输出到log 并绘制accuracy loss曲线: 之前已经编译了matcaffe 和 pycaffe,caffe中其实已经自带了这样的小工具.caffe-master/tools/extra/parse_log.sh caffe-master/tools/extra/extract_seconds.py和 caffe-master/t…
转:http://blog.csdn.net/tina_ttl/article/details/51556984 今天才偶然发现,caffe在计算Accuravy时,利用的是最后一个全链接层的输出(不带有acitvation function),比如:alexnet的train_val.prototxt.caffenet的train_val.prototxt 下图是这两个网络训练配置文件(prototxt文件)计算Accuray的配置文件截图的截图(对于该部分,alexnet和caffenet是…
                                                    本文讲解主要涉及的知识点: 1.线程控制 2.画图类 3.心形函数 大家先看图片: <ignore_js_op> 因为前一段时间在写画图类,刚好有一个线程控制画图闪烁的,我就想说我能不能做一个心形闪烁的,出来的效果就如图,先贴再讲解代码: 里面设置两个类,一个是我们的activity类,这个类用来显示示图,然后建一个继承SurfaceView的类,我们在这里面画图.先贴两个累的代码: 主类名…
1.在使用draw_net.py的时候,提示如下错误: AttributeError: 'google.protobuf.pyext._message.RepeatedScalarConta' object has no attribute '_values': 后来知道原因:(http://www.infocool.net/kb/WWW/201702/293190.html) 这是由于你的protobuf的版本不对造成的,用pip install protobuf安装的版本号默认是最新的3.2…
下面是基于我自己的接口,我是用来分类一维数据的,可能不具通用性: (前提,你已经编译了caffe的python的接口) 添加 caffe塻块的搜索路径,当我们import caffe时,可以找到. 对于这一步,一般我们都会把 cafffe 模块的搜索路经永久地加到先加$PYTHONPATH中去,如可以把 export PYTHONPATH=/path/to/caffe/python:$PYTHONPATH 写到 .bashrc中.而下面的做法,只是临时的做法哦: improt sys #sys.…
神经网络中,我们通过最小化神经网络来训练网络,所以在训练时最后一层是损失函数层(LOSS), 在测试时我们通过准确率来评价该网络的优劣,因此最后一层是准确率层(ACCURACY). 但是当我们真正要使用训练好的数据时,我们需要的是网络给我们输入结果,对于分类问题,我们需要获得分类结果,如下右图最后一层我们得到 的是概率,我们不需要训练及测试阶段的LOSS,ACCURACY层了. 下图是能过$CAFFE_ROOT/python/draw_net.py绘制$CAFFE_ROOT/models/caf…
关于caffe中的solver: cafffe中的sover的方法都有: Stochastic Gradient Descent (type: "SGD"), AdaDelta (type: "AdaDelta"), Adaptive Gradient (type: "AdaGrad"), Adam (type: "Adam"), Nesterov's Accelerated Gradient (type: "Nes…
在执行训练的过程中,若指定了生成log信息,log信息包含初始化,网络结构初始化和训练过程随着迭代数的loss信息. 注意生成的log文件可能没有.log后缀,那么自己加上.log后缀.如我的log信息为pycaffe20180110-151247-31929.log 生成loss曲线图用到caffe中自带的小工具 caffe/tools/extra/parse_log.sh caffe/tools/extra/extract_seconds.py和 caffe/tools/extra/plot…
如同前几篇的可视化,这里采用的也是jupyter notebook来进行曲线绘制. // In [1]: #加载必要的库 import numpy as np import matplotlib.pyplot as plt %matplotlib inline import sys,os,caffe #设置当前目录 caffe_root = '/home/bnu/caffe/' sys.path.insert(0, caffe_root + 'python') os.chdir(caffe_ro…
转自:http://blog.csdn.net/u013078356/article/details/51154847 在caffe的训练过程中,大家难免想图形化自己的训练数据,以便更好的展示结果.如 果自己写代码记录训练过程的数据,那就太麻烦了,caffe中其实已经自带了这样的小工具 caffe-master/tools/extra/parse_log.sh  caffe-master/tools/extra/extract_seconds.py和 caffe-master/tools/ext…